
1

Compressing Timeseries Data
How to stop worrying and love PostgreSQL extensions

Karl Pietrzak
Lead Research Engineer

3/21/2019

Agenda
● What we do
● Data problems we faced
● How we tried to solve them
● Results
● Other experiments

2

What we do
● DARPA SIGMA project

○ “Real-Time Radiological Detection and
Response Platform”

○ SaaS
○ personal, mobile, and static radiation

sensors
○ eventually chemical, explosives, and

biological agent sensors as well

3

1,000 sensor deployment in DC area in 2016

4

https://www.darpa.mil/about-us/timeline/sigma

Data Problems We Faced
● Major IoT project

○ 100s to 1000s of sensors
○ Not just voltage and temperature
○ Full spectral readings

■ Usually 1Hz
■ Resolution of sensor varies

5

Data Problems We Faced
● Sensor ID

○ uuid (16 bytes)

● Time
○ timestamptz (8 bytes)

● Temperature
○ real (4 bytes)

● Battery Voltage
○ real (4 bytes)

● Spectrum
○ Min: 512 * smallint (2 bytes)
○ Max: 4096 * smallint (2 bytes)

6

=

● 16+8+8+(512*2) = 1056 bytes
● 16+8+8+(4096*2) = 8224 bytes

Data Problems We Faced

7

● Min: 16+8+8+(512*2) = 1056 bytes
● Max: 16+8+8+(4096*2) = 8224 bytes

×
● Once a second, 24 hours a day,

365 days a year

=
● Min: ~31GB a year
● Max: ~241GB a year
● ~31.5 billion rows a year

Data Problems We Faced
● Goal: reduce # of rows and sheer amount of data
● Data-specific

○ Battery voltage, location, spectrum, etc. don’t change very much
○ Some values fall into a very narrow range

● Data-agnostic
○ timerangetz[], float[][] ?
○ zlib’ed bytea ?
○ one-byte integer, tinyint ?
○ partitioning, pg_partman?

8

How we tried to solve it
● TimescaleDB

○ open-source PostgreSQL extension
○ Manages time-based partitioning for you
○ Lots of helpful time-based functions

9

How we tried to solve it
● pgpointcloud

○ Another open-source PostgreSQL extension
○ Designed for point cloud (LIDAR) data

■ No standardized point cloud format
■ “Some data sets might contain only X/Y/Z

values. Others will contain dozens of
variables: X, Y, Z; intensity and return
number; red, green, and blue values; return
times; and many more. There is no
consistency in how variables are stored:
intensity might be stored in a 4-byte integer,
or in a single byte; X/Y/Z might be doubles, or
they might be scaled 4-byte integers.”

10

How we tried to solve it
● pgpointcloud

○ Four different types of compression
■ zlib
■ sigbits
■ rle
■ laz 👏

○ Points (X, Y, Z) are combined into Patches (Point[])

11

merged and
compressed

How we tried to solve it
● pgpointcloud

○ X: uint64_t (time in millis)
○ Y: uint16_t (bin/channel)
○ Z: uint16_t (count)

12
Y

Z

X (time) Y (bin/channel) Z (count)

1553136615 2 10

1553136615 13 1

1553136615 30 3

How we tried to solve it

13

Kafka Aggregator
(Spring

Integration)

PostgreSQL
+

TimescaleDB
+

pgpointcloud

Results

● ~80% compression!
○ Compressing across three dimensions: time, channel, and energy

● 60x reduction of rows
● Stable insertion rate
● Full visibility of the data via SQL

○ PC_Explode(p pcpatch)
○ PC_FilterGreaterThan(p pcpatch, dimname text, float8 value)

14

create table Spectrum (
 sensorId UUID NOT NULL,
 starttime TIMESTAMP WITH TIME ZONE,
 endtime TIMESTAMP WITH TIME ZONE,
 spectrum pcpatch(3),
 PRIMARY KEY(sensorId, starttime)
);

Other

● Can use exclusion constraints if you don’t want overlapping patches
● Try Citus with TimescaleDB
● pgpointcloud / TimescaleDB are orthogonal
● Experiment with aggregating different time ranges
● Experiment with aggregating between different sensors

15

https://www.citusdata.com/blog/2018/03/19/postgres-database-constraints/

Conclusion

● Know your data
● Do not fear PostgreSQL extensions
● Greater than the sum of their parts
● Dockerfile available at

https://github.com/twosixlabs/docker-postgres-pointcloud

16

https://github.com/twosixlabs/docker-postgres-pointcloud

The End

17

● Questions?
● Thank you!
● We are hiring!

○ https://twosixlabs.com/careers

https://twosixlabs.com/careers

