=

'

GREENPLUM
SU MMIT by Pivotal.

AT POSTGRESCONF | NEW YORK | #SCALEMATTERS



Agile Data Science on Greenplum
Using Airflow



°

o refers to a group of
methodologies based on
, where requirements and solutions evolve
through collaboration between self-organizing
cross-functional teams.”

Pivotal



Data Science Phases

Discovery Phase Operationalization (O16n) Phase

Pivotal



Data Science Phases

(7 _ Discovery
, Phase

v Data exploration &
cleaning

v Feature engineering
V' Model Building

v Model Evaluation

Pivotal



Data Science Phases - Agility

_\ l '_ Discovery
, Phase

v Data exploration &
cleaning

Rapid Iteration
and

v Model Building Experimentation

v Feature engineering

v Model Evaluation

Pivotal



Data Science Phases - Agility

‘7 Discover =2 Pivotal
- - y Jupyter Gln\-/:e?lplum*
AR Phase N

v Data exploration &
cleaning

Rapid Iteration
and

v Model Building Experimentation

v Feature engineering

v Model Evaluation

Pivotal



Greenplum Database

e MPP database based on
Postgres C@ S
In database analytics Master
Parallel architecture -k © —

Node1 @ Node2 @ Node3 @ NodeN @
Segment Host Segment Host Segment Host Segment Host

€ € €

ElE
@ca A @ca @ca
& & Ja:%a % e K

= = =
Java Java Java

Pivotal



Jupyter Notebooks

Pivotal

" Jupyter Geolife Airflow Last Checkpoint: 20 hours ago (autosaved)

File Edit View Insert Cell Kernel Widgets Help

B+ < & B4 ¥ M EC|Code =
75% 501.0 0.691260 0.023056 53.589242
max 501.0 1.406879 0.064444 2532.381804

In [15]: rcParams['figure.figsize'] = 20, 10
df .hist(bins=50)

2 Logout

Not Trusted |Python3 O

Out[15]: array([[<matplotlib.axes.

_subplots.Axessubplot object at 0x117e3ee80>,

<matplotlib.axes. subplots.AxesSubplot object at 0x1181leed8>],
[<matplotlib.axes. subplots.AxesSubplot object at 0x11813£470>,
<matplotlib.axes. subplots.AxesSubplot object at 0x118162b00>]],
dtype=object)
asance s e pur
» s
. . T NEm—— B —
2ot —
In [16]: df[df.speed > 1000]
gutiasls uid trajectory_id mode pt
4 117 501 train 010’ V) 100(
16 117 501 train 0101000020E6100000C649312DD7125D400E3CO827EAQT... 0101000020E6100(
In [23]: df_train = 3sql select * from exp.trajectory label speed where mode = 'train’
* postgresql://airflow_user:***@172.16.223.128/airflow_test
662 rows affected.
In [24]: df_train = df_train.DataFrame()
In [27]: df_train.hist(bins=100)
out[27]: array([[(matplotllb axes._subplots.AxesSubplot object at 0x118c81c£8>,
otlib.axes. subplots.AxesSubplot object at 0x119175748>],
.AxesSubplot object at 0x119194d68>,
<matplotlib.axes. subplots.AxesSubplot object at 0x1191b£400>]],
dtype=object)
asarce s -
o 01

JUPYter  Modeling (unsaved changes) [ Logount
File Edit View Insert  Cell Kernel  Widgets Help Trusted |Pylhon 30
+ < @B ¢ M EC Code i@

In [1]:

In [2]:

In [3]:

out[3]:

In [4]:

import matplotlib.pyplot as plt

import pandas as pd

import numpy as nj

import matplotlib.pylab as plt

import seaborn as sns

from tsfresh import extract_features, extract relevant_features, select_features
from tsfresh.utiliti import impute

from sklearn.cross_validation import train_test_split

from sklearn.metrics import classification report, confusion matrix

/Users/ajoshi/anaconda3/envs/gpdb-airflow/1ib/python3. 6/site-packages/sklearn/cross_vali
dation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of
the model_selection module into which all the refactored classes and functions are move
d. Also note that the interface of the new CV iterators are different from that of this
module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

import os
GPDB_HOST = os.environ['GPDB_HOST' ]

load_ext sql
4sql postgresql://airflow_user:airflowé{GPDB_HOST}/airflow_test

‘Connected: airflow user@airflow_test'

Create tsfresh features

t3sql
drop function if exists tsfresh_features(
text[],
timestamp[],
float[],
float(],
float[]
)i
create or replace function tsfresh features(
trajectory_id text[],
ttime timestamp(],
distance_miles float[],
interval_hour float[],
speed float[]

returns setof ts_features

$$
import pandas as pd
import numpy as np
from tsfresh import extract_features
from tsfresh.utilities.dataframe_: Filictionstimpors ;unpute
from tsfresh.feature_extraction import , MinimalF

= pd.DataFrame({'id': trajectory_id,
‘time': ttime,
‘distance miles': distance miles,
‘interval_hour': interval_hour,
‘speed': speed})

extraction_settings = MinimalFCParameters()
X = extract_features(df, column_id='id', column_sort='time’
default_fc_parameters=extraction settings,
impute_function=impute)
X = X.reset_index()

X = X.melt(id vars=['id'])



Data Science Phases

Discovery Phase Operationalization (O16n) Phase

Pivotal



Data Science Phases

Pivotal

—

(@) Operationalization (O16n)
Phase

w“——

v Data Pipelines
v Testing
v Monitoring

e APIsto consume model
output



Data Science Phases - Agility

7~

( ) Operationalization (O16n)
Phase
w“——

v Automated manageable pipelines v Data Pipelines
v Testing with ClI v Testing
v Monitoring to react to Failures v/ Monitoring

Madlib Flow Talk by Frank and APIs to consume model

Sridhar output

Pivotal



Data Science Phases - Agility

7~

x grv:;alplum (@) Operationalization (O16n)
Phase
w“——

v Automated manageable pipelines v Data Pipelines
v Testing with ClI v Testing
v Monitoring to react to Failures v/ Monitoring

Madlib Flow Talk by Frank and APIs to consume model

Sridhar output

Pivotal



Airflow

e Apache Project spun out
of Airbnb

e “Airflow is a platform to
programmatically author,
schedule and monitor
workflows.”

Pivotal

Airflow DAGs Data Profiling ~ Browse v Admin~ Docs~ About~ Astronomer~ 21:44 UTC O

i
BY DAG: geolife hedule: 1day, 0

# Graph View ali Task Duration B Task Tries A Landing Times = Gantt i= Details 4 Code 2 Refresh

Base date:| 2007-05-14 00:00:00 Number of runs: @ Go

© PostgresOperator W success [l running [l failed [l skipped [ retry [l queued [Jno status
2 ® o A2
3 § ) o
i B b =
Qlpaa)
Qsfresh_model_features 1]

QO pivot_tsfresh_features
QO create_tsfresh_features
Qtrajectory_speed_walk
O calculate_trajectory_speed
QO merge_trajectory_label
Qclean_daily._trajectory
O fetch_daily_trajectory
Qclean_daily_label
(O fetch_daily_label
O predict_walk_trajectories
Qsfresh_predict_features
Opivol,lslreshjsalures




Data Science Use-Case

e The Data
o Time-series trajectories with
latitude and longitude of location.
o Subset of trajectories are labeled as
walk / not walk

e Our Model
o Build Classification model using
labelled data to identify if new
unlabeled trajectories are walk or
not walk

Pivotal

Example trajectories

JI

) B

o X



Example data

Pivotal

We have mode labels of
walk and not walk only
for subset of incoming
daily trajectories

uid
020
020
020
020
020

39.9744533333333

39.9746016666667

Example trajectory data

latitude

39.97445

39.97473

39.9748116666667

uid
020
020
020
020
020

longitude

116.302163333333

116.302165

116.302073333333
116.302066666667

116.30207

tdate
2011-08-25
2011-08-25
2011-08-25
2011-08-25
2011-08-25

Example label data

start_date
2011-08-27
2011-08-27
2011-08-27
2011-08-27
2011-08-28

start_time
06:13:01
09:34:43
14:50:31
15:01:59
04:33:31

end_date
2011-08-27
2011-08-27
2011-08-27
2011-08-27
2011-08-28

end_time
08:01:37
14:50:30
15:01:58
16:31:43
04:44:25

ttime
14:38:25
14:38:26
14:39:22
14:39:23
14:39:24

mode
walk
walk
bus
walk

walk



Discovery phase +» Operationalization phase

After every model iteration we check if the model is viable

e Check the quantitative metrics of the model like AUC, ROC curve, accuracy
etc

e Check the qualitative results of the model and if it make sense to a subject
matter expert

Once we are convinced that the model is both quantitatively and
qualitatively viable we can move to the Operationalization phase

Pivotal



Discovery phase +» Operationalization phase

Example of code from the discovery phase which is converted into a task script

: Jupyter  Geolife Airflow (autosaved) e Logout

File  Edit

View Insert Cell Kernel Widgets Help Not Trusted ¢ |Py‘thon30

B+ < @B 4 ¥ MM C|Code DI

In [53]:

Pivotal

calculate speed

%$%sql
drop table if exists exp.trajectory label speed;
create table exp.trajectory label speed
as
with lead trajectory as (
select *,
lead(latitude) over(partition by trajectory id order by ttimestamp) as lead_lat,
lead(longitude) over(partition by trajectory id order by ttimestamp) as lead long,
lead(ttimestamp) over(partition by trajectory id order by ttimestamp) as lead_ttimestar
from exp.trajectory label
e
t2 as (
select uid,
trajectory_id,
mode,

pt,
ST_SetSRID(st_point(lead long, lead lat),4326) as lead _pt,
tdate,
ttime,
ttimestamp,
lead_ttimestamp
from lead trajectory

e
t3 as (
select *,
st_distance(st_transform(pt, 2163) , st_transform(lead pt, 2163)) / 1609.34 as dis
EXTRACT (EPOCH FROM (lead ttimestamp - ttimestamp)) / 3600.0 as interval_hour
from t2
where lead_ttimestamp != ttimestamp --removing divide by zero error
)
select *,
distance miles / interval hour as speed
from t3

distributed by (uid, trajectory_id)

* postgresql://airflow user:***@172.16.223.128/airflow_test
Done.
35177 rows affected.

calculate_trajectory_speed.sql

alter table geolife.geolife_trajectory_label_speed drop partition if exists p{{ ds_nodash }};
alter table geolife.geolife_trajectory_label_speed add partition p{{ ds_nodash }}
values (date '{{ ds }}');

dis 2, Interval and

C

insert into geolife.geolife_trajectory_label_speed
with lead_trajectory as (
select x,
lead(latitude) over(partition by trajectory_id order by ttimestamp) as lead_lat,
lead(longitude) over(partition by trajectory_id order by ttimestamp) as lead_long,
lead(ttimestamp) over(partition by trajectory_id order by ttimestamp) as lead_ttimestamp
from geolife.geolife_trajectory_label_clean
where tdate = '{{ ds }}'
)y
12 as (
select uid,
trajectory_id,
mode,
pt,
ST_SetSRID(st_point(lead_long, lead_lat),4326) as lead_pt,
tdate,
ttime,
ttimestamp,
lead_ttimestamp
from lead_trajectory
),

ocation points

t3 as (
select *,
st_distance(st_transform(pt, 2163) , st_transform(lead_pt, 2163)) / 1609.34 as distance_miles,
EXTRACT(EPOCH FROM (lead_ttimestamp - ttimestamp)) / 3600.0 as interval_hour
from t2
where lead_ttimestamp != ttimestamp g divide t erc
)
select *,
distance_miles / interval_hour as speed
from t3;



Architecture overview

Pivotal
Greenplumr

| 5
|

¢

Model
Evaluation

Data
Exploration

Iterative
Discovery
Phase

output

ML Model + Data
pre-processing

Model
Building

Feature
Engineering

Discovery Phase

Pivotal

\"

£
5 I

e

Modular idempotent tasks

Pivotal
Greenplum’

X @
(1)

Model refitting
workflow

Connect tasks to create
automated workflows

New data inference
workflow

Operationalization Phase

1B =

TBD: Expose
model results
using an API




Data Science Phases - Agility

7~

x @ 25 (@) Operationalization (O16n)
Phase
w“——

v Automated manageable Pipelines v Pipelines
v Testing with CI/CD v Testing
v Monitoring to React to Failures v Monitoring

Madlib Flow Talk by Frank and APIls to consume model

Sridhar output

Pivotal



Data Prep and Feature Engineering

Fetch fetch_daily_trajectory fetch_daily_label
i i

Clean clean_daily_trajectory clean_daily_label
SR o

merge_trajectory_label
i
Transform calculate_trajectory_speed
i
trajectory_speed_walk
i
create_tsfresh_features

Feature Engineering 1

pivot_tsfresh_features

— <

Pivotal



Data Prep and Feature Engineering -
Demo



Model Training

Pivotal

Extract labelled data for
model creation/refitting

£

tsfresh_model_features




Model Training

Pivotal

This DAG has a single task for model
training

In this task we split the data into train and
test samples, train the model, evaluate the
model and capture the accuracy, auc and
model tables.

We want all of the above to run at the
same time

train_model

SELECT madlib.train_test_split(
'geolife.tsfresh_model_features', =
'geolife.features_walk_{{ds_nodash}}',
0.8, —— Sample proportion
0.2, —-— Sample proportion
NULL, —— Strata definition
NULL, —— Columns to output
FALSE, —— Sample without replacement
TRUE) ; —- Separate output tables

—— build a random forest model using madlib

Source table

-— Output table

DROP TABLE IF EXISTS geolife.rf_walk_{{ds_nodash}}_output, geolife.rf_walk_{{ds_nodash}}_outg

SELECT madlib.forest_train('geolife.features_walk_{{ds_nodash}}_train', —— source tat
‘geolife.rf_walk_{{ds_nodash}}_output', —— output model table
tadi¥y —— 1id column
'label’, —-- response
Skt —— features
'tdate’, —— exclude columns
NULL, —-— grouping columns
20::integer, —— number of trees
2::integer, —— number of random features
TRUE: :boolean, —— variable importance
1::integer, —— num_permutations

integer, —-— max depth
integer, —— min split
integer, —— min bucket
10::integer —— number of splits per continuous variable

)i

—— Evalute the built model

DROP TABLE IF EXISTS geolife.rf_walk_{{ds_nodash}}_results;

SELECT madlib.forest_predict('geolife.rf_walk_{{ds_nodash}}_output',
'geolife.features_walk_{{ds_nodash}}_test"',
‘geolife.rf_walk_{{ds_nodash}}_results') ;——,
—'prob*);

—— Capture model results

drop table if exists geolife.walk_{{ds_nodash}}_result;
create table geolife.walk_{{ds_nodash}}_result
as
with t as (
select id,

case when label = True then 1.0 else 0.0 end as obs
from geolife.features_walk_{{ds_nodash}}_test

tiree model
== new ¢

—— output table






Model Scoring

X

tsfresh_predict_features

x

Inference for

predict_walk_trajectories
unlabelled data

Pivotal



Model Scoring

DO

e The unlabeled data which is extracted from i

tabname character varying(255);

the features table is scored in this DAG s

. . . (select 1 from geolife.tsfresh_predict_features{{ds_nodash}} 1limit 1) as t) > @
and
We fl rSt CheCk If any mOdel has been bu”t (select count(x) from (select 1 from geolife.models_metadata 1limit 1) as p) > @
THEN
If there is a model so we score the data tabname := (select model_tabnane
from geolife.models_metadata
order by mdate

(inference) timit 1)

DROP TABLE IF EXISTS prediction_results;

PERFORM madlib.forest_predict(tabname,
'geolife.tsfresh_predict_features{{ds_nodash}}'|,
‘geolife.walk_prediction_results{{ds_nodash}}',
'response’ );I

insert into geolife.walk_prediction_results
select *,

regexp_replace(id, '~.%([0-9-1{10})_.%$', E'\\1')::date as tdate
from geolife.walk_prediction_results{{ds_nodash}};

END IF;
END
$dos;

drop table if exists geolife.tsfresh_predict_features{{ds_nodash}};
drop table if exists geolife.walk_prediction_results{{ds_nodash}};

Pivotal






Model Re-Training

e Daily we get some more labeled data, once we have accumulated
enough labeled data we can retrain the model for better accuracy
e We have scheduled model re-training monthly

Pivotal






Data Science Phases - Agility

7~

x @ 2 ( ) Operationalization (O16n)
Phase
w“——

v Automated manageable Pipelines v Pipelines
v Testing with CI/CD v Testing
v Monitoring to React to Failures v Monitoring

Madlib Flow Talk by Frank and APIls to consume model

Jarrod output

Pivotal



Testing with CI/CD

e Testing Data Pipelines is hard

e Test Coverage (Test Tasks vs Test DAGSs)

e Testing as part of the CI/CD

Pivotal






Data Science Phases - Agility

@) ti lization (O16n)
@) o ( ) perationalization n
k O @ Phase
w“——
v/ Monitoring to React to Failures v/ Monitoring

Pivotal



Monitoring and Error Fixing

e Monitoring and error fixing is big part of responsive data pipelines
e Ability to quickly identify what is failing, why it is failing and fixing it
with minimum lead time is crucial

e In this demo we will showcase an error fixing case

Pivotal



Monitoring and Error Fixing - Demo



Data Science Phases - Agility

7~

x @ 2 ( ) Operationalization (O16n)
Phase
w“——

v Automated manageable Pipelines v Pipelines
v Testing with CI/CD v Testing
v Monitoring to React to Failures v Monitoring

Madlib Flow Talk by Frank and APIs to consume model

Sridhar output

Pivotal



Conclusion

v Greenplum and Jupyter notebooks provides a set of tools to do
Agile Data Science during discovery phase

v Greenplum along with Airflow and Circle Cl is very effective to
do Agile Data Science during the operationalization phase

Pivotal



Questions

Pivotal



“We partner to help you
compete, grow, and transform.”

Pivotal



