BRAY IANT

Connecting Galaxies: Information

Exchange Technigques for
Heterogeneous Environments

Hettie Dombrovskaya &

Alyssa Ritchie, Braviant Holdings
Boris Novikov, HSE

MARCH 2019

WHY GALAXIES

BRAYV |IANT

CONFIDENTIAL

WHY CARE ABOUT DISTANT GALAXIES?

P

O
We are very good at We aren’t very good Most of the real-
optimizing individual at optimizing world queries come
queries communications from this galaxy,
with this galaxy which knows
nothing about a
database!

BRAYV |IANT

CONFIDENTIAL

THE OBJECT-ORIENTED DREAM

Once upon a time (long ago, in a previous
Mmillennium), object-oriented application design
and development was born...

e - However, some parts of the world remain
unknown..

RAV IANT

CONFIDENTIAL

BRAV IANT

\WHAT HAPPENED NEXT?

BRAVE PEOPLE tried to introduce object-oriented
databases..

—_—

Progress

ObjectStore

b
Objectivity

BRAYV IANT

NNNNNNNNNNNN

WHAT HAPPENED NEXT?

J

N
THE OBJECT ORIENTED DATABASE
APPROACH EVOLUTION
Matured and became the Resulted in more powerful
de facto standard databases

The only part that remains unchanged is the connectivity, based on
obsolete standards like ODBC and JDBC. As result, we now have
somewhat convoluted techniques..

BRAYV |IANT

CONFIDENTIAL

\HOW DOES ORM WORK?

1. The application disassembles
an object into undividable
(scalar) parts

2. The parts are sent to/from E

the database separately

Application Database
Model

3. At the database site, the
complex data structure is
re-assembled

A |lot of transfers are needed
to send a complex object

BRAYV IANT

CONFIDENTIAL

\AND IS ANYONE HAPPY?

BRAY IANT

NNNNNNNNNNNN

WHY IS NOBODY HAPPY?

APPLICATION DATABASE

« Complexity of building The power of query
compound objects languages isn't used

« Embedding database « Too many small database
specifics into the application calls bottleneck

* Multiple database calls, BN nication

which slow performance

BRAYV |IANT

CONFIDENTIAL

\CAN VIVIE! F 1K I TIEARBSOLUTELY!

Externalized complex objects (JSON)

o e SRl
|

Database
Model

L

<

BRAYV IANT

NNNNNNNNNNNN

OUIRES@LUTION;

Mapping both DB objects (D-objects) and application
objects (A-objects) to the transfer objects (T-objects)

ON THE APP SIDE, this object is handled with standard
serialization/deserialization tools.

ON THE DATABASE SIDE, the transferred JSON object is
mapped to the database schema with declarative SQL
statements, exploiting the power of query processing
features.

JDBC is still needed, but it is only used as a transport layer for
the JSON objects.

RAV IANT

CONFIDENTIAL

IMPLEME
(HOW DID WE

BRA' IANT

NNNNNNNNNNNN

\THE BEST OPTION FOR A SINGLE QUERY?
A FUNCTION!

First, we tried a well-known approach: implementing
functions that return record sets:;

create type user_account _record as (
user_account id bigint,

username text
brand text,
Ims_customer_id int);

select * from select user_account(l) returns a record

BRAY IANT

CONFIDENTIAL

Y\ AND MANY MORE..

select * from select user _account by username(‘usernamel’)

Returns the same record type

select * from select user _account by phone(°888888888")

select * from select user_account by last name(‘last name’)

All of them return the same record type, and we hide the
query details!
BRAV IANT

CONFIDENTIAL

\COMPLEX OBJECTS ARE NESTED..

..and we started creating record types with embedded records:

create type user_account record as (
user_account _id bigint,

username text ,

brand text,

Ilms _customer_1id int,

email_address email address record[] ,

addresses address record[],

phones phone_ record[],

bank _information_id bank _information record[]);

BRAY IANT

CONFIDENTIAL

\THE PROBLEM IN THIS APPROACH

PostgreSQL does not preserve the type of the embedded
record, so the output of

select * from user_account get (1)

Will look like this:

1,
username@email.com’,

"chorus’,
{‘city’,’ street’,’IL’, ‘60606°},
{1, ‘primary’, 4445556666’}

BRAY IANT

CONFIDENTIAL

\CAN VViE' USE JSIOIN FORNESTE DEOBJ E @l

We sure can!

select user_account_id,

username

brand,

json _build object (’address 1°, addr_line 1,
‘city’, «city,

‘state’, state code,
‘zip’, zip) as address
from user_account u
join address a
on a.user_account id=u.user_account_id

BRAY IANT

CONFIDENTIAL

HOW FAR

BRA' IANT

CONFIDENTIAL

\NOW OUR FUNCTIONS RETURN JSON OBJECTS

"dob": "1971-01-10",

"ssn": "111223333",

"username": "john.smith@email.com",
"last _name": "John",

"first _name": "Smith",

"phones": [
{ "phone_number": "1112223333", "phone_priority id": 1,
"phone_priority": "primary", "phone_ type id": 1 },
{ "phone_number": "4445556666", "phone priority id": 2,
"phone_priority": "secondary", "phone type id": 1 }
]
}

In other words, we mapped D-objects to T-objects

BRAY IANT

CONFIDENTIAL

DB SCHEMA (D-OBJECTS)

user_account
email_address H
~ 2 ""luser_account_id [int8
email_addres_id ints
- - LUSEarname text
email_address text first_name toxt pr— e
user_account_id intd | . intd
S5 text 'H—O‘écit}r text state_name [text
dob date state_id intd
brand text zip text
last_loan_id intd TR -
— e address_priority_id |intd
ress_priory_ | address_priority
user_account_id intd — _
) address_priority_id |intd
address_linel text | H
) Field Type
phone_type address_line2 text » ot ot
address_priori ex
phone type id |intd phone Field Type i
phone_type text phone_id ints
phone_number text
user_account_id [intd
phone_priority -H———)g phone_priority_id |int4
phone_priority id |intd phone_type_id int4
phone_priority text
Field Type
BRAV IANT

CONFIDENTIAL

\ T-OBJECTS

user_account_record
user_account_id bigint
username text

brand text

full_name text

addresses address_record []

phones phone _record(]

ssn text
dob date

Email email_record]]

address_record
address_id bigint
city text

Zip text
address_priority text

street_address text

email_record
email_address text

phone_record
phone_id bigint
phone_number text
phone_priority text

phone_type text

BRAYV IANT

CONFIDENTIAL

NEW PROBLEMS

When we return JSON from a function, we are loosing strong
types

Building JSON with embedded SELECTs can be slow

BRAYV |IANT

CONFIDENTIAL

N\ INITIAL SOLUTION

SPECIAL “STRUCTURE-DEFINING” FUNCTIONS:

create or replace function user_account json() returns text
language sql immutable as $body$select $$'user_id, 'dob’, 'ssn’,
username,last name,first name,phones$$::text; $body$;

create or replace function phone_json() returns text language sql
immutable as $body$select $$phone number,phone priority id,
phone priority,phone_ type id$%::text; $body$;

We started to use these functions in json_build_object BRAV IANT

CONFIDENTIAL

N\ EMBEDDING SQL: NO GOOD SOLUTION

SELECT
v_dminfo_json[l],match status 1,
v_dminfo_json[2],match_status 2,
v_dminfo_json[3],
array_to _json(array(select preapproval_id
FROM origination.application_preapproval
WHERE application_id =a.application_id and match type=1l)),
v_dminfo_json[4],
array_to _json(array(select preapproval_id
FROM origination.application_preapproval
WHERE application_id =a.application_id and match type=2)))
))::text
FROM origination.application
WHERE ...

BRAY IANT

CONFIDENTIAL

NEW SOLUTI

FUNC

BRA' IANT

NNNNNNNNNNNN

\MAKING JSON BUILD AN AGGREGATE!

create or replace function common.json_agg next (agg_sta text, val json) returns text as
$$ begin
if wval is not null then
if agg sta = '' then agg sta := val::text ;
else agg sta := agg sta || ',' || (val::text) ;
end if;
end if;
return agg sta;
END;$% LANGUAGE plpgsql;

create or replace function common.json_agg final (agg_sta text) returns json as
$$ begin
if agg sta = '' then return null;
else return ('[' || agg_sta || ']1')::json;
end if;
END;
$$ LANGUAGE plpgsql;

drop AGGREGATE if exists common.json_agg (json);
create AGGREGATE common.json_agg (json) (sfunc=common.json_agg next,
STYPE = text, FINALFUNC = common.json_agg final, INITCOND = "')

BRAY IANT

CONFIDENTIAL

W\ HOW SELECT LOOKS NOW

SELECT array _agg(single item)
from (select row(
match_status 1,
match_status_ 2,
SELECT array_agg(row(
preapproval_id ::preapproval record)
FROM application preapproval
WHERE application_id =a.application_id
AND match_type=1)) AS preapproval 1,
SELECT array_agg(row(
preapproval_id ::preapproval record)
FROM application preapproval
WHERE application_id =a.application_id
AND match_type=2)) AS preapproval 2,
v_dminfo_json[4],
array _to _json(array(select preapproval id
from origination.application_preapproval
where application_id =a.application_id and match_type=2)))
))::.app_preapproved record
FROM origination.application
WHERE ...

BRAY IANT

CONFIDENTIAL

LET’S SEE W
FUNCTION

THE C(

BRA' IANT

CONFIDENTIAL

http://github.com/braviant/bsf_db/blob/master/sql/dfc/test_pkg.sql

\DATA MODIFICATION

UPDATE address and DELETE phone:

{
"user _account _id":1,
"addresses":[{ "address 1d":10, "street address":"111l MyStreet" } 1],
"phones":[{ "phone_ 1id":22, "command": "delete" }]

}

UPDATE full name and INSERT email address:

{

"user account 1id":1,
"full _name": "NewFirst NewlLast",
"email addresses":[{ "email address": "username@email.com" }]

BRAV IANT

CONFIDENTIAL

BRA' IANT

CONFIDENTIAL

\LIVE RUN TIMES BY QUERY

dbname bsf_prod ~

Avg. query runtime by "queryid" -EDW-ADHOC .
40s

30s

20s

10s

Oms

14:40 14:45 14:50 15:00 15:05 15:10 1515 15:20 15:25

BRAY IANT

CONFIDENTIAL

\AVG EXECUTION TIME AND AVG OPS/MIN

PER

HOUR

.

1000

100

10

1

012 3 456 7 8 91011121314151617 181920212223

—————— e e T~

/\/\
N o S

0123 456 7 8 91011121314151617 181920212223

—application_search

—preapproval_select_second

—ser _account_update
—application_update
———user_account_search_generic

—|0an_search_generic

BRAY IANT

CONFIDENTIAL

BRA' IANT

CONFIDENTIAL

ONE PROBLEM REMAINS..

Simple nesting is not always the most efficient.
(That's why we didn't use the user account example!)

When the results of the selection are relatively large, the
execution of the nested selects may be sub-optimal.

L et's see how:

NNNNNNNNNN

BUILDING COMPLEX OBJECTS WITH
SUMENHE N EST | NG

SELECT unnested

1:M (denormalized) GROUP BY Master
ARRAY_AGG

M AST ER M1 D11 D11
M1 D12 M1 D12

M1 D13 D13

M2 D21 D21

DETAIL M2

M2 D22 D22

BRAYV IANT

CONFIDENTIAL

BUILDING COMPLEX OBJECTS WITH
MULTIPLE PATH NESTING

SELECT unnested

1:M (denormalized) GROUP BY Master
ATTRIBUTEs ~ PATTRIBUTES F ATTRIBUTES ATTRIBUTES (D ATTRIBUTES) (F ATTRIBUTES)
M1 D11 NULL
M1 D12 NULL D11 N
M1 D12 F12
M1 D13 NULL D13
M2 D21 NULL
M2 D22 NULL
m2 oz 22
M1 NULL F11 F23
M1 NULL F12
M1 NULL F13
M2 NULL F21
M2 NULL F22 BRAY IANT

CONFIDENTIAL

o e
!|
]

LET'S LOOK

USER ACC

THE C(

BRA' IANT

NNNNNNNNNNNN

http://github.com/braviant/bsf_db/blob/master/sql/identity/user_account_j_pkg.sql

QUESTIONS, D
AND WHERE W

BRA' IANT

NNNNNNNNNNNN

- Previous talks:
* https://hdombrovska

/07 /our-presentation- ﬁﬁ
e https://hdombrovs ;mw

/30/braviant-holdin -at-2
- EXAMPLE: A »

* https://drive.google.com/file/d/
GPA50aW7Xik-Ilbt19DS !

BRA' IANT

CONFIDENTIAL

https://hdombrovskaya.wordpress.com/2018/09/07/our-presentation-on-pg-open-2018/
https://hdombrovskaya.wordpress.com/2018/12/30/braviant-holdings-talks-at-2q-pg-conf/

