
PL/pgSQL Control
Structures

An Introduction by a Nooblet

Meet Me,
Andreas Nel
- Software Developer
- Currently employed by Quant Engineering Solutions

https://github.com/AndreasNel

https://www.quora.com/profile/Andreas-Nel-1

https://www.linkedin.com/in/andreas-pp-nel/

https://github.com/AndreasNel
https://www.quora.com/profile/Andreas-Nel-1
https://www.linkedin.com/in/andreas-pp-nel/

What even is the stuff?
PL/pgSQL - A procedural language that can be used to write
functions and procedures. Functions encapsulate multiple
queries in order to improve performance, and introduces
control structures that can be used to perform complex
computations.

Control Structure - Block of code that evaluates variables
and then performs certain instructions in a specific way
based on the given parameters.

Functions vs Procedures, TLDR;
Functions

- Usually have return values
- Is part of a single transaction
- Executed with SELECT

Procedures

- Don’t have return values
- Can start and stop multiple transactions inside
- Executed with CALL

Such
Languages

- SQL
- PL/pgSQL
- PL/Python
- PL/Java
- PL/R
- PL/PHP
- PL/Ruby
- PL/Scheme
- PL/sh
- PLV8

A proper Tower of Babel

But Why?
I like overly

complicated queries

- Eliminates extra trips
between database server
and client

- No unnecessary transfer
of intermediate results

- Avoids multiple rounds
of query parsing

Performance.

How to call this function

- The traditional way
- Arguments are

substituted in the
order of the parameters

- Arguments can be left
out starting from the
end

Positional
Notation

Named Notation
- Argument names and

their values are
indicated with =>
(newer syntax) or :=
(older syntax)

- Arguments can be
specified in any order

- Omitted arguments take
their default values

- Cannot be used with
aggregate functions,
unless it is used as a
window function

Mixed Notation
- Mixture of positional

and named notation
- Positional arguments

must precede named
arguments

- Cannot be used with
aggregate functions,
unless it is used as a
window function

Return Statements

Returning to the Mothership
Return statements are used to stop the execution of a
function and return to the caller with a result.

A return value can be of a scalar type (int, text, varchar,
etc.) or a composite type (row, record) for functions with
single return values.

No return value → return VOID.

Functions can also return sets of values (think of it as a
function returning a table).

How to Return (single return values)
RETURN expression;

- Evaluates expression, terminates function and returns
result

- Scalar return values → Cast result to corresponding type
- Composite → Deliver exact specified column set
- Required in functions, except when output parameters are

given or the return type is VOID

How to Return (sets of return values)
RETURN NEXT expression;

RETURN QUERY query;

RETURN QUERY EXECUTE command-string [USING expression [,…]];

- Only when functions return SETOF sometype
- Appends results to result set, exits with final RETURN
- Entire result set kept in memory, (work_mem config

variable)

Conditionals

I have some conditions...
IF … THEN … END IF

IF … THEN … ELSE … END IF

IF … THEN … ELSIF … THEN … ELSE … END IF

CASE … WHEN … THEN … ELSE … END CASE

CASE WHEN … THEN … ELSE … END CASE

- When you want alternative commands to execute based on
certain conditions

No boolean
short-circuiting

If this then do that
IF boolean-expression THEN

 statements

END IF;

...else do this
IF boolean-expression THEN

 statements

ELSE

 statements

END IF;

...elsif elsif elsif elsif elsif elsif
- Conditions are tested successively
- ELSIF == ELSEIF
- Can be accomplished with nested IF-ELSE statements

Make your case
Simple CASE

- Search expression evaluated once
- Successively compared for equality
- No ELSE and no match → CASE_NOT_FOUND exception

...or if you’re feeling frisky
Searched CASE

- Each WHEN clause is evaluated in turn
- Only accepts boolean expressions
- Subsequent expressions are not evaluated if found
- No else and no match → CASE_NOT_FOUND exception
- Entirely equivalent to IF-THEN-ELSIF (+ exception)

Loops

Feeling a little loopy?
[<<label>>]

LOOP

 statements

END LOOP [label];

- Unconditional, indefinite looping until a RETURN or EXIT
statement executes

- Labels can be used by nested loops to indicate places
referred by CONTINUE and EXIT statements

How to interfere
EXIT [label] [WHEN boolean-expression];

- Terminates innermost loop
- Unless used with BEGIN block, then a label is mandatory

CONTINUE [label] [WHEN boolean-expression];

- Skips following statements
- Starts following iteration of loop

While we’re busy
[<<label>>]

WHILE boolean-expression LOOP

 statements

END LOOP [label];

- Executes while expression evaluates to TRUE
- Evaluated before each iteration

It’s for their own good
- Loop variable only exists inside loop, automagically int
- Lower and upper expressions evaluated once
- BY clause indicates step

I love it when you talk FOR-IN to me
[<<label>>]

FOR target IN query LOOP

 statements

END LOOP [label];

- Variable declared as row, record, or comma-separated
scalar variables, still accessible after loop

- query can be any query that returns rows
- PL/pgSQL variables substituted, query plan cached

Execute Order 66
[<<label>>]

FOR target IN EXECUTE text_expression [USING expression [,
...]] LOOP

 statements

END LOOP [label];

- String expression is executed and planned on each
iteration

- Smart programmers can adjust speed and/or flexibility of
dynamic query

I should get a raise for this
- FOREACH loops through arrays
- Variable can be comma-separated list, each is assigned

the corresponding array value
- SLICE indicates the dimension in which array is traversed
- No SLICE → elements traversed in storage order

Error Handling

Sometimes,
things break

“exceptional circumstances”

Breaking bad?
- Exceptions can be caught and handled
- Local variables accessible
- https://www.postgresql.org/docs/11/errcodes-appendix.html

https://www.postgresql.org/docs/11/errcodes-appendix.html

This is not a
fix-it-all block!

What broke?
- SQLSTATE and SQLERRM
- GET STACKED DIAGNOSTICS variable { = | := } item [, …];

Where am I?

All the Links
- https://www.postgresql.org/docs/11/plpgsql.html
- https://www.postgresql.org/docs/11/errcodes-appendix.html
- https://www.postgresql.org/docs/11/plpgsql-control-struct

ures.html
- All images sampled from Google Images

https://www.postgresql.org/docs/11/plpgsql.html
https://www.postgresql.org/docs/11/errcodes-appendix.html
https://www.postgresql.org/docs/11/plpgsql-control-structures.html
https://www.postgresql.org/docs/11/plpgsql-control-structures.html

