
© 2019 DIAMANTI 1

Unleashing the Power of PostgreSQL
with Kubernetes and Diamanti

Arvind Gupta, Principal Solutions Architect, CKA certified

© 2019 DIAMANTI 2

Agenda

• Tribute to PostgreSQL

• Cloud native landscape for Database-as-a-Service

• Containers, Kubernetes and Operators for Databases

• Importance of Hyperconverged platform for DBaaS

• PostgreSQL benchmarking results on Kubernetes and HCI

© 2019 DIAMANTI 3

1986, University of California Berkeley

© 2019 DIAMANTI 4

1986 2019

© 2019 DIAMANTI 5

Some Key Stats About the Elephant

Screenshot from https://www.postgresql.org/about/

© 2019 DIAMANTI 6

How to Reach the Universe

© 2019 DIAMANTI 7

Elephant Needs a Jetpack!

© 2019 DIAMANTI 8

How Far Can the Elephant Go With a Jetpack?

200K+
TPS*

900K+
IOPS

< 1ms
Latency

Per Diamanti HCI node

Jetpack = Kubernetes + HCI

* Worst case scenario

© 2019 DIAMANTI 9

self-service

resilience

security

scaling

storage

Cloud Native Infrastructure

networkcompute mgmt performance

RBAC

automation backup upgradesavailability

packaging portable lightweight

Cloud Native Applications

microservices

Database-as-a-Service

Containers

Container Orchestration

immutable

recovery

availability

API-driven time-to-market

O
pe

ra
to

r

The Building Blocks

© 2019 DIAMANTI 10

Database
Management

High Availability
and Failover

Backup
and Restore

Snapshot
and Cloning

User and Policy
Management

Monitoring

HW Mirroring HW Offload

Quality-
of-Service DBaaS

Storage Network
HW Offload

Encryption

Load Balancing
and Traffic Isolation

Data, Control
and Storage

Traffic Isolation

Scaling
and Sharding

Quality-
of-Service

© 2019 DIAMANTI 11

Database
Management

High Availability
and Failover

Backup
and Restore

Snapshot
and Cloning

User and Policy
Management

Monitoring

HW Mirroring HW Offload

Quality-
of-Service DBaaS

Storage Network
HW Offload

Encryption

Load Balancing
and Traffic Isolation

Data, Control
and Storage

Traffic Isolation

Scaling
and Sharding

Quality-
of-Service

Containers + Kubernetes + Operators

Hyperconverged Infrastructure

© 2019 DIAMANTI 12

self-service

resilience

security

scaling

storage

Cloud Native Infrastructure

networkcompute mgmt performance

RBAC

automation backup upgradesavailability

packaging portable lightweight

Cloud Native Applications

microservices

Database-as-a-Service

Containers

Container Orchestration

immutable

recovery

availability

API-driven time-to-market

O
pe

ra
to

r

The Building Blocks

© 2019 DIAMANTI 13

Containers and Kubernetes

• Container

• Standard unit of application packaging

• Independence from OS versions

• Kubernetes

• De facto container orchestration platform

• Scalable and extensible

© 2019 DIAMANTI 14

Why Kubernetes Operator?

• Operators is a purpose-built controller for life cycle management of
specific Kubernetes application, with built-in operational knowledge

• Automation: self-service, abstract complexities

• Standardization: same workflow for different customization

• Ease-of-use: user friendly CLI/API/UI for user interface

• Flexibility: reuse and run your workload in any environment or cloud

• Database lifecycle management with an operator
§ Create, destroy or clone databases
§ Scale and sharding with automatic cloning and syncing
§ Setup high availability, replication, load balancing, failover
§ Setup backup, snapshots, disaster recovery
§ User and policy management
§ Monitoring

© 2019 DIAMANTI 15

Metrics

primary-
pvc

PostgresSQL

Secondary Deployment

Metrics

primary-
pvc

PostgresSQL

Secondary Deployment

Highly Available Postgres Cluster Deployed with Operator

Postgres Clusterpgo
operator

primary-service

Metrics

primary-pvc

PostgresSQL

Primary Deployment

Metrics

secondary-pvc

PostgresSQL

Secondary Deployment

secondary-service

pgpool

© 2019 DIAMANTI 16

Typical Mix of Databases in an Enterprise

Postgres SQL
MS SQL
MySQL
MongoDB
IBM DB2
Oracle

85%
Databases have

Kubernetes Operators

© 2019 DIAMANTI 17

self-service

resilience

security

scaling

storage

Cloud Native Infrastructure

networkcompute mgmt performance

RBAC

automation backup upgradesavailability

packaging portable lightweight

Cloud Native Applications

microservices

Database-as-a-Service

Containers

Container Orchestration

immutable

recovery

availability

API-driven time-to-market

O
pe

ra
to

r

The Building Blocks

© 2019 DIAMANTI 18

Infrastructure Sprawl – OS, Servers, Storage

>12
Different OS

versions

= Super high OpEx cost

>10
Different server
configurations

+ >4
Teams handling

different lifecycles

+

© 2019 DIAMANTI 19

Diamanti Enterprise Kubernetes Platform

Cloud Native
Networking

Cloud Native
Storage

CSICNI

ORCHESTRATION

RUNTIME

GKE AKS
SECURITY (RBAC, LDAP, AD)

OPERATING SYSTEM

ORCHESTRATION

CONTAINER RUNTIME

MANAGEMENT

MONITORING

LOGGING

SERVICE DISCOVERY

ROLE BASED ACCESS
CONTROL

NETWORKING

STORAGE

CONFIGURATION
MANAGEMENT

IMAGE
REGISTRY

NETWORKING STORAGE

© 2019 DIAMANTI 20

Significant Gains with Open Source DBs on Kubernetes and HCI

DBs managed
By 1 Admin

50

4

13x

Time to launch
New database

<1 min

>1 hr
60x

Savings when moving
to open source DB

100x

1x

100x

Footprint reduction
with HCI

16x

1x

16x
Traditional DB infrastructure

Opensource + Kubernetes + HCI

© 2019 DIAMANTI 21

Performance

© 2019 DIAMANTI 22

Benchmarking: Select Only Queries

200K+
TPS*

900K+
IOPS

< 1ms
Latency

Per Diamanti HCI node

* Worst case scenario

© 2019 DIAMANTI 24

Postgres Benchmark Setup

189 Pgbench

…

cluster-2

189 PostgreSQL instances

…

cluster-1

© 2019 DIAMANTI 25

Postgres Benchmark Setup: Hardware Configuration

Cluster configuration:
Number of nodes: 3
Total PostgreSQL pods: 189
QoS: 945k provisioned IOPS

Node configuration:
CPUs: 64 HT Cores
Memory: 256 GB of RAM
Storage: 3TB
VNICs: 63
Total PostgreSQL pods: 63
QoS: 315k provisioned IOPS

PostgreSQL pod configuration:
Image: single-instance PostgreSQL
CPU: 1HT
RAM: 3.9GB
Volume size: 20GB
Data load factor: 600
Capacity used: 10-12 GB

QOS configuration:
High: 20k provisioned IOPS per pod
Medium: 5k provisioned IOPS per pod
Best-efforts: NO provisioned IOPS per pod

© 2019 DIAMANTI 26

Without QoS

No QoS
(63)

3.2K

5ms

High
(20)

Medium
(20)

Best-effort
(23)

6.9K

2.7K

.08K2.3ms

5.7ms

180ms

With QoS : Multiple workloads on High

TPS Comparisons: Meet your SLAs, GUARANTEED!

High
(1)

Medium
(20)

Best-effort
(23)

15K

2.9K

.08K1 ms

5.3ms

177ms

With QoS : Critical workload on High

© 2019 DIAMANTI 27

TPS Comparisons: Meet your SLAs, GUARANTEED!

© 2019 DIAMANTI 28

Performance Results - Select Only Queries

15K

© 2019 DIAMANTI 29

~1M IOPS per
Node

Performance Results - Select Only Queries

© 2019 DIAMANTI 30

Performance Results - TPC-B Like Queries

8.5K

© 2019 DIAMANTI 31

500k+ IOPS per
Node

Performance Results - TPC-B Like Queries

© 2019 DIAMANTI 32

Best-Effort

The QoS Impact - Select Only Queries

High

Medium

© 2019 DIAMANTI 33

Best-Effort

The QoS Impact - TPC-B Like Queries

High

Medium

© 2019 DIAMANTI 34

The QoS impact: Guard you critical pods

Postgres
Pod

Pgbench
PodBackup

Pod

© 2019 DIAMANTI 35

Without QoS

No QoS
(63)

3.2K

5ms

High
(20)

Medium
(20)

Best-effort
(23)

6.9K

2.7K

.08K2.3ms

5.7ms

180ms

High
(1)

Medium
(20)

Best-effort
(23)

15K

2.9K

.08K1 ms

5.3ms

177ms

With QoS : Multiple workloads on High With QoS : Critical workload on High

TPS Comparisons: Meet your SLAs, GUARANTEED!

© 2019 DIAMANTI 36

Learn More at

www.diamanti.com

info@diamanti.com

@diamanticom

https://www.linkedin.com/company/diamanti

http://bit.ly/DiamantiDBaaS

© 2019 DIAMANTI 37

Thank You!

© 2019 DIAMANTI 38

Supporting slides

© 2019 DIAMANTI 39

Postgres bench
results

© 2019 DIAMANTI 40

Singe instance PostgresSQL with no CPU limit : Read only

> pgbench -r -S --host=172.16.225.36 --port=5432 --username=primaryuser --jobs=2 --time=180 --
client=32 pgbench
running iteration 1 on 172.16.225.36
starting vacuum...end.
transaction type: <builtin: select only>
scaling factor: 600
query mode: simple
number of clients: 32
number of threads: 2
duration: 180 s
number of transactions actually processed: 16935308
latency average = 0.340 ms
tps = 94080.942801 (including connections establishing)
tps = 94082.575020 (excluding connections establishing)
statement latencies in milliseconds:

0.001 \set aid random(1, 100000 * :scale)
0.340 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;

© 2019 DIAMANTI 41

Singe instance PostgresSQL with 4G mem : Read only

pgbench -r -S --host=172.16.225.18 --port=5432 --username=primaryuser --jobs=2 --time=300 --client=32 pgbench
running iteration 1 on 172.16.225.18
starting vacuum...end.
transaction type: <builtin: select only>
scaling factor: 600
query mode: simple
number of clients: 32
number of threads: 2
duration: 300 s
number of transactions actually processed: 15504631
latency average = 0.619 ms
tps = 51681.884356 (including connections establishing)
tps = 51682.515420 (excluding connections establishing)
statement latencies in milliseconds:

0.001 \set aid random(1, 100000 * :scale)
0.619 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;

© 2019 DIAMANTI 42

Singe instance PostgresSQL with 4G mem : TPC-B like queries
pgbench -r --host=172.16.225.18 --port=5432 --username=primaryuser --jobs=2 --time=300 --client=32 pgbench
running iteration 1 on 172.16.225.18
starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 600
query mode: simple
number of clients: 32
number of threads: 2
duration: 300 s
number of transactions actually processed: 2621329
latency average = 3.662 ms
tps = 8737.683240 (including connections establishing)
tps = 8737.779495 (excluding connections establishing)
statement latencies in milliseconds:

0.001 \set aid random(1, 100000 * :scale)
0.000 \set bid random(1, 1 * :scale)
0.000 \set tid random(1, 10 * :scale)
0.000 \set delta random(-5000, 5000)
0.174 BEGIN;
1.126 UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
0.268 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
0.280 UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
0.300 UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
0.235 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid,

:delta, CURRENT_TIMESTAMP);
1.278 END;

© 2019 DIAMANTI 50

Why Diamanti

© 2019 DIAMANTI 51

Why run DBaaS on Diamanti?

• Ready to go Kubernetes platform in under 15 minutes

• QoS:
• No noisy neighbors
• Isolation at the PCI-e layer
• Guaranteed performance
• Integrated with k8s storage class

• Performance:
• Fast NVMe storage with million+ IOPS
• 300 us latency across the cluster (at full load)

• Mirroring/ HW level replication:
• Diamanti Mirroring (across D20 nodes)
• Diamanti Backup Controller for snapshot based backups
• Separate storage network (for NVMeoE traffic)
• Quick recovery of pods in case of failure.

• Simplified L2 network
• Direct TCP connectivity to pods via data network.
• No need to route traffic via host/nodes
• Separate control and data plane
• Easy communication between replicas.

• Multi-zone(AZs) support for better HA and DR
• Diamanti network supports stretched/campus clusters; and schedules pods with storage

across multiple zones for HA.
• Scheduler take care of volume locality.

© 2019 DIAMANTI 52

High Availability across Diamanti Multi-Zone clusters

Diamanti Multi-Zone Cluster

Diamanti Storage Layer

DB-1
(master)

DB-0
(master)

DB-0
(slave-0)

DB-0
(slave-1)

Diamanti Storage Network

Diamanti Data Network

DB-1
(Mirror1)

DB-1
(Mirror2)

DB-1
(Mirror0)

Zone0 Zone1 Zone2

© 2019 DIAMANTI 53

Postgres Operator by Crunchy Data: Crunchy Backup

pgo operator

primary-service

primary-pvc

PostgresSQL

primary-
pv

backup-pvc

Backup-
pv

CrunchyBackuprsync rsync

Diamanti volumeDiamanti volume NSF volume

Backup-
pv

Option1 Option2

Managed by K8S

Managed by Diamanti

© 2019 DIAMANTI 54

Postgres Operator by Crunchy Data: Diamanti Backup

pgo
operator

primary-service

primary-pvc

PostgresSQL

primary-
pv

remote-
pvc

Backup-
pv

Diamanti Backup Job

Diamanti volumeDiamanti volume NSF volume

Backup-
pv

Option1 Option2

backup-pvc

Instant Snapshot Instant Volume

Managed by K8S

Managed by Diamanti

© 2019 DIAMANTI 55

Thank You!

