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Unleashing the Power of PostgreSQL
with Kubernetes and Diamanti

Arvind Gupta, Principal Solutions Architect, CKA certified
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Agenda

• Tribute to PostgreSQL

• Cloud native landscape for Database-as-a-Service 

• Containers, Kubernetes and Operators for Databases

• Importance of Hyperconverged platform for DBaaS

• PostgreSQL benchmarking results on Kubernetes and HCI
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Some Key Stats About the Elephant

Screenshot from https://www.postgresql.org/about/
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How to Reach the Universe
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Elephant Needs a Jetpack!
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How Far Can the Elephant Go With a Jetpack? 

200K+ 
TPS*

900K+
IOPS

< 1ms
Latency

Per Diamanti HCI node

Jetpack = Kubernetes + HCI

* Worst case scenario
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Containers and Kubernetes

• Container

• Standard unit of application packaging 

• Independence from OS versions

• Kubernetes

• De facto container orchestration platform

• Scalable and extensible
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Why Kubernetes Operator?

• Operators is a purpose-built controller for life cycle management of 
specific Kubernetes application, with built-in operational knowledge

• Automation:  self-service, abstract complexities

• Standardization: same workflow for different customization

• Ease-of-use: user friendly CLI/API/UI for user interface

• Flexibility: reuse and run your workload in any environment or cloud

• Database lifecycle management with an operator
§ Create, destroy or clone databases
§ Scale and sharding with automatic cloning and syncing
§ Setup high availability, replication, load balancing, failover
§ Setup backup, snapshots, disaster recovery
§ User and policy management
§ Monitoring
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Typical Mix of Databases in an Enterprise

Postgres SQL
MS SQL
MySQL
MongoDB
IBM DB2
Oracle

85%
Databases have 

Kubernetes Operators
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Infrastructure Sprawl – OS, Servers, Storage

>12
Different OS 

versions

= Super high OpEx cost

>10
Different server 
configurations

+ >4
Teams handling 

different lifecycles

+
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Diamanti Enterprise Kubernetes Platform
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Significant Gains with Open Source DBs on Kubernetes and HCI

DBs managed
By 1 Admin

50

4

13x

Time to launch
New database

<1 min

>1 hr
60x

Savings when moving 
to open source DB

100x

1x

100x

Footprint reduction 
with  HCI

16x

1x

16x
Traditional DB infrastructure

Opensource + Kubernetes + HCI



© 2019 DIAMANTI  21

Performance
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Benchmarking: Select Only Queries 

200K+ 
TPS*

900K+
IOPS

< 1ms
Latency

Per Diamanti HCI node

* Worst case scenario
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Postgres Benchmark Setup

189 Pgbench

…

cluster-2

189 PostgreSQL instances

…

cluster-1
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Postgres Benchmark Setup: Hardware Configuration

Cluster configuration:
Number of nodes: 3
Total PostgreSQL pods: 189
QoS: 945k provisioned IOPS

Node configuration:
CPUs: 64 HT Cores
Memory: 256 GB of RAM
Storage: 3TB
VNICs: 63
Total PostgreSQL pods: 63
QoS: 315k provisioned IOPS

PostgreSQL pod configuration:
Image: single-instance PostgreSQL
CPU: 1HT
RAM: 3.9GB
Volume size: 20GB
Data load factor: 600
Capacity used: 10-12 GB

QOS configuration:
High: 20k provisioned IOPS per pod
Medium: 5k provisioned IOPS per pod
Best-efforts: NO provisioned IOPS per pod
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Without QoS

No QoS
(63)

3.2K

5ms

High
(20)

Medium
(20)

Best-effort
(23)

6.9K

2.7K

.08K2.3ms

5.7ms

180ms

With QoS : Multiple workloads on High

TPS Comparisons:  Meet your SLAs, GUARANTEED!

High
(1)

Medium
(20)

Best-effort
(23)

15K

2.9K

.08K1 ms

5.3ms

177ms

With QoS : Critical workload on High
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TPS Comparisons:  Meet your SLAs, GUARANTEED!
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Performance Results - Select Only Queries

15K
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~1M IOPS per 
Node

Performance Results - Select Only Queries
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Performance Results - TPC-B Like Queries

8.5K
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500k+ IOPS per 
Node

Performance Results - TPC-B Like Queries
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Best-Effort

The QoS Impact - Select Only Queries

High

Medium
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Best-Effort

The QoS Impact - TPC-B Like Queries

High

Medium
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The QoS impact: Guard you critical pods

Postgres 
Pod

Pgbench
PodBackup 

Pod
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Learn More at

www.diamanti.com

info@diamanti.com

@diamanticom

https://www.linkedin.com/company/diamanti

http://bit.ly/DiamantiDBaaS
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Thank You!
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Supporting slides
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Postgres bench 
results
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Singe instance PostgresSQL with no CPU limit : Read only

> pgbench -r -S --host=172.16.225.36 --port=5432 --username=primaryuser --jobs=2 --time=180 --
client=32 pgbench
running iteration 1 on 172.16.225.36
starting vacuum...end.
transaction type: <builtin: select only>
scaling factor: 600
query mode: simple
number of clients: 32
number of threads: 2
duration: 180 s
number of transactions actually processed: 16935308
latency average = 0.340 ms
tps = 94080.942801 (including connections establishing)
tps = 94082.575020 (excluding connections establishing)
statement latencies in milliseconds:

0.001  \set aid random(1, 100000 * :scale)
0.340  SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
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Singe instance PostgresSQL with 4G mem : Read only

pgbench -r -S --host=172.16.225.18 --port=5432 --username=primaryuser --jobs=2 --time=300 --client=32 pgbench
running iteration 1 on 172.16.225.18
starting vacuum...end.
transaction type: <builtin: select only>
scaling factor: 600
query mode: simple
number of clients: 32
number of threads: 2
duration: 300 s
number of transactions actually processed: 15504631
latency average = 0.619 ms
tps = 51681.884356 (including connections establishing)
tps = 51682.515420 (excluding connections establishing)
statement latencies in milliseconds:

0.001  \set aid random(1, 100000 * :scale)
0.619  SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
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Singe instance PostgresSQL with 4G mem : TPC-B like queries
pgbench -r --host=172.16.225.18 --port=5432 --username=primaryuser --jobs=2 --time=300 --client=32 pgbench
running iteration 1 on 172.16.225.18
starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 600
query mode: simple
number of clients: 32
number of threads: 2
duration: 300 s
number of transactions actually processed: 2621329
latency average = 3.662 ms
tps = 8737.683240 (including connections establishing)
tps = 8737.779495 (excluding connections establishing)
statement latencies in milliseconds:

0.001  \set aid random(1, 100000 * :scale)
0.000  \set bid random(1, 1 * :scale)
0.000  \set tid random(1, 10 * :scale)
0.000  \set delta random(-5000, 5000)
0.174  BEGIN;
1.126  UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
0.268  SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
0.280  UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
0.300  UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
0.235  INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, 

:delta, CURRENT_TIMESTAMP);
1.278  END;
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Why Diamanti
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Why run DBaaS on Diamanti?

• Ready to go Kubernetes platform in under 15 minutes

• QoS:
• No noisy neighbors
• Isolation at the PCI-e layer
• Guaranteed performance
• Integrated with k8s storage class

• Performance:
• Fast NVMe storage with million+ IOPS 
• 300 us latency across the cluster (at full load)

• Mirroring/ HW level replication:
• Diamanti Mirroring (across D20 nodes)
• Diamanti Backup Controller for snapshot based backups
• Separate storage network (for NVMeoE traffic)
• Quick recovery of pods in case of failure.

• Simplified L2 network
• Direct TCP connectivity to pods via data network.
• No need to route traffic via host/nodes
• Separate control and data plane
• Easy communication between replicas.

• Multi-zone(AZs) support for better HA and DR 
• Diamanti network supports stretched/campus clusters; and schedules pods with storage 

across multiple zones for HA.
• Scheduler take care of volume locality.
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High Availability across Diamanti Multi-Zone clusters

Diamanti Multi-Zone Cluster

Diamanti Storage Layer

DB-1
(master)

DB-0
(master)

DB-0
(slave-0)

DB-0
(slave-1)

Diamanti Storage Network

Diamanti Data Network

DB-1
(Mirror1)

DB-1
(Mirror2)

DB-1
(Mirror0)

Zone0 Zone1 Zone2
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Postgres Operator by Crunchy Data: Crunchy Backup

pgo operator

primary-service

primary-pvc

PostgresSQL

primary-
pv

backup-pvc

Backup-
pv

CrunchyBackuprsync rsync

Diamanti volumeDiamanti volume NSF volume

Backup-
pv

Option1 Option2

Managed by K8S

Managed by Diamanti
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Postgres Operator by Crunchy Data: Diamanti Backup

pgo
operator

primary-service

primary-pvc

PostgresSQL

primary-
pv

remote-
pvc

Backup-
pv

Diamanti Backup Job

Diamanti volumeDiamanti volume NSF volume

Backup-
pv

Option1 Option2

backup-pvc

Instant Snapshot Instant Volume

Managed by K8S

Managed by Diamanti
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Thank You!


