
http://Lloyd.TheAlbins.com/AutoVacuum

AutoVacuum
By Lloyd Albin

© xkcd.xom (Randall Munroe) under the Creative Commons Attribution-NonCommercial 2.5 License

Additional notes in the

note section of the slide

when you see this icon

() in the upper right

corner of the slide.

http://creativecommons.org/licenses/by-nc/2.5/

AutoVacuum: Is this presentation for me?

• Who should pay attention to this presentation?

• Anyone who is running a lot of transactions, especially lots of deletes, updates, or rollbacked inserts.

All of these commands cause deleted tuples (records) in the tables which needs to be vacuumed.

• Why should I adjust these values?

• For most people PostgreSQL needs to be re-tuned because PostgreSQL is configured to run optimally

on old hardware.

• PostgreSQL has acknowledged this with Postgres 12 by changing ONE of the seven default

AutoVacuum values.

• What happens if I don’t adjust the AutoVacuum?

• Table bloat can happen, especially on heavily used PostgreSQL Clusters (Servers). Enough bloat can

happen on very heavily used systems to run them out of disk space which then crashes the

PostgreSQL Cluster.

© Fred Hutchinson Cancer Research Center 2

AutoVacuum: Is this presentation for me?

• Where can I find out how to adjust the AutoVacuum?

• This presentation gives you all the knowledge you need to be able to re-tune your AutoVacuum along

with links to relevant documentation.

• When can I tell if the adjustments work?

• After you manually vacuum one of the bloated table, you should be able to see that the bloat does not

come back after churning the tuples (records) within the table.

© Fred Hutchinson Cancer Research Center 3

Causes and Effects

Heavy churn on small table

• A Small table that gets thousands of rows added and deleted. This table is then joined to

a large table to view a set of results.

• Effect: Your queries get slower and slower until a query that was 10 ms now takes 5 seconds or more, but if you start and

stop your application, then the problem self fixes itself.

• Caused by the AutoAnalyze not updating the table stats. This causes the query planner to run slowly and to pick the wrong

query plan which then causes the query to perform in minutes vers milliseconds. A manual Analyze will fix this issue. This

issue can be verified by checking the row count vers the estimated table rows in the stats and/or by monitoring the query

planning time. When you stop and restart your application, this gives AutoVacuum and AutoAnalyze time to catch up and

update the table stats.

• Solution: Make your AutoVacuum/AutoAnalyze more aggressive if you have the spare Disk I/O. If you have high Disk I/O then

you need to figure out the right trade off between database responsiveness and acceptable table bloat.

© Fred Hutchinson Cancer Research Center 5

Heavy churn on large tables

• Large table with tens of millions of rows where you are deleting and adding millions of

rows per hour.

• Effect: You find that your queries are slowing down and when you look at your AutoVacuum, the AutoVacuum seems to be

AutoVacuumig this table 24 hours per day, but if you stop your application for a few days or dump and restore your database

it fixes itself.

1. Caused by not enough time for the AutoVacuum to complete before the next churn cycle. This make the AutoVacuum take

longer and longer to complete with the table bloat getting worse and worse until the AutoVacuum takes over 24 hours to

complete. Stopping the Application lets the AutoVacuum catch up and then the queries run fast again. This can be fixed by

either stopping the churn and doing a manual vacuum/analyze or by increasing your AutoVacuum's I/O rate by increasing

the AutoVacuum Cost Limit. This can be verified by watching the currently running AutoVacuum's and the estimated dirty

rows in the table stats.

2. Caused by a long running transaction on the same server or a long running transaction on the secondary server, via

streaming replication, that prevents the autovacuum event horizon from moving forward.

© Fred Hutchinson Cancer Research Center 6

Heavy churn on large table indexs

• Large table with tens of millions of rows where you are deleting and then adding millions

of rows per hour with the same index values inside of a transaction.

• Effect: Your queries get slower and slower, but if you dump and restore your database, everything is fast again.

• Caused by the deleted records needing to be in the index at the same time as the new records. This means that all the index

pages need to be split causing the index to double in size (or more) to allow the new entries to be inserted. The space is not

recovered by the AutoVacuum system because it does not do a true vacuum of the index. The AutoVacuum will only

vacuum/delete an index page which is 100% empty. The AutoVacuum does not do anything with partially filled pages except

to remove deleted index entries. This can be verified by either looking for index bloat or by replacing the index and the query

runs fast again.

• Solution: Make your AutoVacuum more aggressive if you have the spare Disk I/O. If you have high Disk I/O then you need to

figure out the right trade off between database responsiveness and the AutoVacuum

© Fred Hutchinson Cancer Research Center 7

Drop database is slow

• When you try dropping a database and it takes 5 minutes.

• Effect: When you try dropping a database it takes a long time, such as 5 minutes.

• Caused by the AutoVacuum being very aggressive and the server having high Disk I/O with lots of Pending Writes.

• Solution: This one is not so easy because you have to make tough choice between database responsiveness and table/index

bloat. This is a process of trial and error finding the right balance between AutoVacuum’s aggressiveness and Disk I/O and

Pending Writes.

© Fred Hutchinson Cancer Research Center 8

Database Responsiveness
More Table Bloat
Lower I/O Usage Less Table Bloat

Higher I/O Usage

High Disk I/O AutoVacuum Tunning Choices

AutoVacuum
What to monitor

What to Monitor

• Currently running AutoVacuum

Process’s

• AutoVacuum Thresholds per Table

• Active and Idle in Transaction

Connections

• AutoVacuum Threads in Use

• Max AutoVacuum’s

• CPU Usage

• Disc Read Usage

• Disc Write Usage

• Disc Pending Write

• Write Efficiency

• Disc I/O Time

• Last AutoVacuum per Table

• Disc Free Space

• Custom Table Settings Per Table

• Granted Locks

• AutoVacuum Settings

© Fred Hutchinson Cancer Research Center 10

AutoVacuum Settings
Viewing the server settings

AutoVacuum Settings

• This is more informational than anything, but the line will highlight when a restart is required for the change

to take effect and Pending Restart will be True.

• Postgres 12+ vacuum_cost_delay’s default changed from 20ms to 2ms
• BUT if you upgrade your database to v12, you will still have your original databases defaults. You need to manually update this value.

© Fred Hutchinson Cancer Research Center 12

AutoVacuum Logs
Viewing the log files

AutoVacuum Logs

• Pages Removed / Removed Size – The AutoVacuum was able to reduce the table size.

• Tuples Removed – The AutoVaccum was able to remove records.

• Tupled Dead – The AutoVacuum was not able to remove these records due to they were created after the

Oldest XMIN aka Oldest Transaction ID.

© Fred Hutchinson Cancer Research Center 14

AutoVacuum Logs

• ((Buffer Hits * vacuum_cost_page_hit) + (Buffer Misses * vacuum_cost_page_miss) + (Buffer Dirtied * vacuum_cost_page_dirty)) = Total Cost

• (((Buffer Hits * vacuum_cost_page_hit) + (Buffer Misses * vacuum_cost_page_miss) + (Buffer Dirtied * vacuum_cost_page_dirty)) / autovacuum/

vacuum_cost_limit) = Number of Delay Cycles

• (((Buffer Hits * vacuum_cost_page_hit) + (Buffer Misses * vacuum_cost_page_miss) + (Buffer Dirtied * vacuum_cost_page_dirty)) /

autovacuum/vacuum_cost_limit) * autovacuum/vacuum_cost_delay = Total Delay’s for Disk IO to Catch up.

© Fred Hutchinson Cancer Research Center 15

AutoVacuum Logs

• Here is how these formulas affect how long the AutoVacuum waits idle to let the Disk IO catch up for other processes.

• Table Size 15.85 GB, 3.10 GB Remove from the end of the table by AutoVacuum with 12.75 GB remaining. Removing 10,277,479 Tuples / Records / Rows.

• This AutoVacuum took 3.30 minutes with the autovacuum_cost_limit of 10,000 of which 1.63 minutes was the AutoVacuum sitting idle. This means that the

AutoVacuum really only takes 1.67 minutes. This means that the default setting on PostgreSQL 11- would be 82.67 minutes and on PostgreSQL 12+ 9.67

minutes. Using out current tuning, it takes 4.67 minutes.

• If your Tuple is over 2K LZ compressed, the extra amount will be stored in the Toast Table.

© Fred Hutchinson Cancer Research Center 16

Buffer Hits vacuum_cost_page_hit Buffer Misses vacuum_cost_page_miss Buffers Dirtied vacuum_cost_page_dirty Total Cost

3,468,938 1 1,821,682 10 1,346,682 20 48,619,398

Total Cost autovacuum_cost_limit Numer of Delay Cycles autovacuum_cost_delay Total Delay's for Disk IO

48,619,398 200 243,096 20 ms 4,861,940 ms or 81 m

48,619,398 200 243,096 2 ms 486,194 ms or 8 m

48,619,398 10,000 4,861 20 ms 97,239 ms or 1 m

48,619,398 8,000 6,077 20 ms 121,548 ms or 2 m

48,619,398 5,000 9,723 20 ms 194,478 ms or 3 m

48,619,398 500 97,238 2 ms 194,478 ms or 3 m

pg_stat_activity

• Looking at pg_stat_activity, we can see that the long running transaction in a different database is creating the xmin event horizon that the autovacuum is using.

Only items older than the xmin event horizon will be autovacuumed.

• backend_xid = Top-level transaction identifier of this backend, if any.

• backend_xmin = The current backend's xmin horizon.

• The xmin event horizon can also come from a long running transaction on the secondary server due to hot_standby_feedback turn on for streaming replication.

• However, the cleanup situation will be no worse than if the standby queries were running directly on the primary server, and you are still getting the benefit of off-loading execution onto

the standby.

© Fred Hutchinson Cancer Research Center 17

datname pid usename application_name backend_start xact_start wait_event_type wait_event state backend_xid backend_xmin backend_type

datamart02_dcostanz_1 18504 dcostanz fw delphi-datamart-renderer development 4/22/19 1:21 PM 4/22/19 11:00 PM Client ClientRead idle in transaction 312352069 client backend

delphi_datamart_renderer_dcostanz_1 18493 dcostanz fw delphi-datamart-renderer development 4/22/19 1:21 PM 4/22/19 11:00 PM Client ClientRead idle in transaction 312352070 312352069 client backend

developer_datamart_dcostanz_1 16478 dcostanz fw delphi-datamart-renderer development 4/23/19 5:50 AM 4/23/19 8:00 AM Client ClientRead idle in transaction 312382224 client backend

datamart02_realtime_dcostanz_1 16462 dcostanz fw delphi-datamart-renderer development 4/23/19 5:50 AM 4/23/19 8:00 AM Client ClientRead idle in transaction 312382225 client backend

delphi_datamart_renderer_dcostanz_1 16454 dcostanz fw delphi-datamart-renderer development 4/23/19 5:50 AM 4/23/19 8:00 AM Client ClientRead idle in transaction 312382226 312352069 client backend

delphi_datamart_renderer_dcostanz_1 16453 dcostanz fw delphi-datamart-renderer development 4/23/19 5:50 AM 4/23/19 8:00 AM Client ClientRead idle in transaction 312382227 312352069 client backend

delphi_continuous_integrator_dcostanz_1 2772 dcostanz fw delphi-continuous-integrator development 4/22/19 12:30 PM 4/23/19 10:39 AM Client ClientRead idle in transaction 312399443 312352069 client backend

delphi_importer_venice_odm_dcostanz_1 3925 dcostanz fw delphi-importer-venice-odm development 4/22/19 12:35 PM 4/23/19 11:00 AM active 312402170 312352069 client backend

datamart02_realtime_testing 2796 xapps fw delphi-datamart-renderer testing 4/22/19 12:30 PM 4/23/19 11:07 AM Client ClientRead idle in transaction 312402304 client backend

developer_datamart_testing 2889 xapps fw delphi-datamart-renderer testing 4/22/19 12:30 PM 4/23/19 11:07 AM IO DataFileImmediateSync active 312402305 312352069 client backend

delphi_datamart_renderer_testing 2783 xapps fw delphi-datamart-renderer testing 4/22/19 12:30 PM 4/23/19 11:07 AM Client ClientRead idle in transaction 312402306 312352069 client backend

delphi_datamart_renderer_testing 2785 xapps fw delphi-datamart-renderer testing 4/22/19 12:30 PM 4/23/19 11:07 AM Client ClientRead idle in transaction 312402307 312352069 client backend

df_repository_demo 3670 xapps fw df-repository demo 4/22/19 12:34 PM 4/23/19 11:09 AM Client ClientRead idle in transaction 312402334 312352069 client backend

df_repository_staging 3040 xapps fw df-repository staging 4/22/19 12:31 PM 4/23/19 11:09 AM Client ClientRead idle in transaction 312402335 312352069 client backend

delphi_importer_venice_odm_dcostanz_1 23442 4/23/19 11:03 AM 4/23/19 11:03 AM active 312352069 autovacuum worker

venice_odm_dcostanz_2 24849 4/23/19 11:09 AM 4/23/19 11:09 AM active 312352069 autovacuum worker

delphi_importer_venice_odm_testing 23243 4/23/19 11:03 AM 4/23/19 11:03 AM active 312352069 autovacuum worker

delphi_continuous_integrator_dcostanz_1 21980 4/23/19 10:58 AM 4/23/19 10:58 AM active 312352069 autovacuum worker

delphi_continuous_integrator_dcostanz_1 18488 dcostanz fw delphi-datamart-renderer development 4/22/19 1:21 PM 4/23/19 8:00 AM Client ClientRead idle in transaction 312352069 client backend

delphi_continuous_integrator_dcostanz_1 18490 dcostanz fw delphi-datamart-renderer development 4/22/19 1:21 PM 4/22/19 11:00 PM Client ClientRead idle in transaction 312347264 client backend

delphi_continuous_integrator_dcostanz_1 16463 dcostanz fw delphi-datamart-renderer development 4/23/19 5:50 AM 4/23/19 8:00 AM Client ClientRead idle in transaction 312352069 client backend

delphi_continuous_integrator_testing 23489 4/23/19 11:04 AM 4/23/19 11:04 AM IO DataFileRead active 312352069 autovacuum worker

delphi_continuous_integrator_testing 2874 xapps fw delphi-datamart-renderer testing 4/22/19 12:30 PM 4/23/19 11:07 AM Client ClientRead idle in transaction 312352069 client backend

delphi_continuous_integrator_testing 2888 xapps fw delphi-datamart-renderer testing 4/22/19 12:30 PM 4/23/19 11:07 AM Client ClientRead idle in transaction 312352069 client backend

4767 postgres sqltest_a 4/22/19 8:21 PM Activity WalSenderMain active 312352069 walsender

AutoVacuum Logs

• You will notice that once the blocking transactions completed that the table went from 228,199,485 records to 36,323,774 records but did not decrease in size.

• AutoVacuum:

• Removes empty pages at the end of the table.

• Mark’s old records as reusable space.

• DOES NOT condense pages

• DOES NOT remove empty pages in the middle of the table

• This means that once your table is bloated like this, there are only several solutions.

• Vacuum Full

• Cluster

• Truncate and re-insert the data – Truncate cleans up the pages immediately.

• This type of bloat will cause sequential table scans to run slowly, because they have to read every page, even the empty ones.

© Fred Hutchinson Cancer Research Center 18

Finding tuple usage on each page within the table

• We can find out the used verse unused tuples

on each page by running this query.

• To be able to run this query you need to load

my toolset from

https://github.com/LloydAlbin/SCHARP-PG-

DBA-Debugging-Tools which uses the

pageinspect extension.

© Fred Hutchinson Cancer Research Center 19

SELECT

p,

sum(unused_tuples) AS unused_tuples,

sum(used_tuples) AS used_tuples,

sum(deleted_tuples) AS deleted_tuples

FROM (

SELECT

p,

CASE WHEN (t_xmin IS NULL AND t_xmax IS NULL)

THEN 1

ELSE 0

END AS unused_tuples,

CASE WHEN (t_xmin IS NULL AND t_xmax IS NULL)

THEN 0

ELSE 1

END AS used_tuples

CASE WHEN heap_xmax_committed

THEN 1

ELSE 0

END AS deleted_tuples

FROM

tools.heap_page_item_attrs_details('continuous_integrator_re

ady_area.dataset’)

) a

GROUP BY p

ORDER BY p;

Finding 100% empty pages

• If create a view from the previous query and

then write it’s output to a table, we can run

various queries against the results.

• One such query is how many pages are totally

blank, this are only recoverable with a

VACUUM FULL.

• Default block size is 8K. You can, but should

not, override this when compiling PostgreSQL.

© Fred Hutchinson Cancer Research Center 20

CREATE TABLE tools.dataset_pages AS

SELECT * FROM previous_pages_view;

SELECT

count(*) AS empty_pages,

count(*) * current_setting('block_size')::bigint AS bytes,

pg_size_pretty(count(*) * current_setting('block_size')::bigint)

AS empty_page_size

FROM tools.dataset_pages

WHERE used_tuples = 0;

empty_pages bytes empty_page_size

7,568,398 62,000,316,416 58GB

Seeing the total bloat in tuples

• In the first result, I am using the WHERE

clause to ignoring the 100% empty pages.

• In the second result, I am including the 100%

empty pages.

© Fred Hutchinson Cancer Research Center 21

SELECT

sum(used_tuples) AS used_tuples,

sum(unused_tuples) AS unused_tuples,

sum(deleted_tuples) AS deleted_tuples

FROM tools.dataset_pages

WHERE used_tuples > 0;

SELECT

sum(used_tuples) AS used_tuples,

sum(unused_tuples) AS unused_tuples,

sum(deleted_tuples) AS deleted_tuples

FROM tools.dataset_pages;

used_tuples unused_tuples deleted_tuples

66,813,680 6,280,558 39,466,746

66,813,680 203,492,055 39,466,746

Currently Running

AutoVacuum(s)
Knowing what is a happening and the speed at which it is happening.

Requires PostgreSQL 9.6+

Current Running AutoVacuum(s)

• Table Name
• This will be displayed in one of the following formats: Cluster.Database.Schema.Table or Database.Schema.Table or Schema.Table depending on your template settings.

• Vacuum / Analyze
• This shows you if vacuum and/or Analyze are going to be happening

• Running Time
• How long the AutoVacuum has been running on this specific talbe.

• Phase
• Initializing, scanning heap, vacuuming indexes, vacuuming heap, cleaning up indexes, truncating heap, performing final cleanup

• Total Pages
• This is the number of pages that needs to be processed. Pages by default are 8K.

• Table Size
• This is the heap_blks_read * Yours block/page size giving you the size of your table on disc.

© Fred Hutchinson Cancer Research Center 23

Current Running AutoVacuum(s)

• Pages Scanned
• This is the number of blocks/pages that have been scanned. By watching this, you can tell how fast this part of the process it taking.

• Pages Scanned %
• This is the percent of blocks/pages that have been scanned. By watching this, you can tell how fast this part of the process it taking.

• Pages Vacuumed
• This is the number of blocks/pages that have been vacuumed. By watching this, you can tell how fast this part of the process it taking.

• Pages Vacuumed %
• This is the percent of blocks/pages that have been vacuumed. By watching this, you can tell how fast this part of the process it taking.

• Index Vacuum Count
• After the “vacuuming indexes” stage has been processed, it will show you the number of indexes.

• Max Dead Records
• This is the max number of records that can be processed before an index vacuum is required.

© Fred Hutchinson Cancer Research Center 24

Current Running AutoVacuum(s)

• Dead Records
• Estimated number of dead tuples.

• Start Time
• This is when the AutoVacuum started working on this table.

• Wait Event Type
• LWLock, Lock, BufferPin, Activity, Extension, Client, IPC, Timeout, IO

• Wait Event
• To many to cover here, see https://www.postgresql.org/docs/current/monitoring-stats.html#WAIT-EVENT-TABLE

• State
• This should normally read “Active”.

• Transaction ID Min
• This is the oldest Transaction ID that could read the table.

© Fred Hutchinson Cancer Research Center 25

https://www.postgresql.org/docs/current/monitoring-stats.html#WAIT-EVENT-TABLE

AutoVacuum Thresholds
Knowing when a table will be AutoVacuum’ed

AutoVacuum Thresholds

• Table Name
• This will be displayed in one of the following formats: Cluster.Database.Schema.Table or Database.Schema.Table or Schema.Table depending on your template settings.

• Records Inserted, Records Updated, Records Deleted
• This is the total number of records inserted, updated and deleted. These numbers will only ever go up.

• Live Records, Deleted Records, Record (est)
• This is the estimated number of readable records, deleted records and total records.

© Fred Hutchinson Cancer Research Center 27

AutoVacuum Thresholds

• AV Threshold
• This is the number of deleted records needed to kick off the AutoVacuum process for this table.

• Last Vacuum, Last Analyze
• These are the Last Vacuum / AutoVacuum and Last Vacuum Analyze or Last AutoVacuum Analyze

• AV Needed
• This will show “Yes” if the Deleted Records is more than the AV Threshold

• % Deleted
• This shows you the percentage of the table that is deleted.

© Fred Hutchinson Cancer Research Center 28

Active and Idle in Transaction
Knowing what might be holding locks to prevent AutoVacuum

Active and Idle in Transaction

• Process ID
• This is the number of deleted records needed to kick off the AutoVacuum process for this table.

• Database Name
• These are the Last Vacuum / AutoVacuum and Last Vacuum Analyze or Last AutoVacuum Analyze

• State
• This will show “Yes” if the Deleted Records is more than the AV Threshold

• Application Name
• This shows you the percentage of the table that is deleted.

• Backend Type
• This shows you the percentage of the table that is deleted.

© Fred Hutchinson Cancer Research Center 30

Active and Idle in Transaction

• Wait Event Type
• LWLock, Lock, BufferPin, Activity, Extension, Client, IPC, Timeout, IO

• Wait Event
• To many to cover here, see https://www.postgresql.org/docs/current/monitoring-stats.html#WAIT-EVENT-TABLE

• Backend Start / Transaction Start / Query Start / State Change
• The Backend Start, is when the connection to the server was established.

• The Transaction Start is when you did a BEGIN transaction or started a single item transaction.

• The Query Start is the start of your Query inside of the transaction and will be the same as Transaction Start if running a single item transaction.

• The State Change is the change in state, such as switching from active to “idle” or “idle in transaction”, allowing you to know how long the transaction or connection has been sitting idle.

• Transaction ID
• This shows you the percentage of the table that is deleted.

© Fred Hutchinson Cancer Research Center 31

https://www.postgresql.org/docs/current/monitoring-stats.html#WAIT-EVENT-TABLE

Current Drive Performance
Monitoring current drive performance

Current Drive Performance

• AutoVacuum Threads in Use
• This is the number of AutoVacuum’s threads currently running.

• Max AutoVacuum
• This is the longest running AutoVacuum

• Server-a / Server-b
• Let’s us know which server is primary vers seconday.

• CPU-User
• How much cpu the user, such as user postgres, is currently using.

• servers.virtual.$ServerName-a.aggregation-cpu-average.cpu-user

• servers.virtual.$ServerName-b.aggregation-cpu-average.cpu-user

© Fred Hutchinson Cancer Research Center 33

Current Drive Performance

• I/O Read / I/O Write
• Read and Writing in Bytes / KB / MB / GB

• servers.{virtual,physical}.$ServerName-a.disk-xvdb1.disk_octets.read

• servers.{virtual,physical}.$ServerName-b.disk-xvdb1.disk_octets.read

• servers.{virtual,physical}.$ServerName-a.disk-xvdb1.disk_octets.write

• servers.{virtual,physical}.$ServerName-b.disk-xvdb1.disk_octets.write

• Pending Writes
• Number of writes that were delayed due to I/O saturation.

• servers.{virtual,physical}.$ServerName-a.disk-xvdb1.pending_operations

• servers.{virtual,physical}.$ServerName-b.disk-xvdb1.pending_operations

© Fred Hutchinson Cancer Research Center 34

Current Drive Performance

• Write Efficiency
• Random write is low efficiency, sequential write is high efficiency. We want to see high efficiency.

• offset(scale(asPercent(servers.{virtual,physical}.$ServerName-a.disk-xvdb1.disk_ops.write,servers.{virtual,physical}.$ServerName-a.disk-xvdb1.disk_octets.write),-1),1)

• offset(scale(asPercent(servers.{virtual,physical}.$ServerName-b.disk-xvdb1.disk_ops.write,servers.{virtual,physical}.$ServerName-b.disk-xvdb1.disk_octets.write),-1),1)

• Disc I/O
• Disc I/O usage.

• scale(servers.{virtual,physical}.$ServerName-a.disk-xvdb1.disk_io_time.io_time,0.1)

• scale(servers.{virtual,physical}.$ServerName-b.disk-xvdb1.disk_io_time.io_time,0.1)

© Fred Hutchinson Cancer Research Center 35

Current Drive Performance

• I/O Read / I/O Write Settings
• RAID Type: RAID 6

• Drive Capacity: 146GB

• Single Drive Performance: 6,144 MB/s

• Single Drive Cost: 40

• Number of drives per RAID group: 16

• Number of RAID groups: 1

• Read operations (%): 0 (100% - Write Efficiency, In this case it would be between 0% and 1%)

• Online RAID Calculator (See Page Notes)

© Fred Hutchinson Cancer Research Center 36

Drive (Type /

RPM)

IOPS (4KB

block, random)

IOPS (64KB

block, random)

MB/s (64KB

block, random)

IOPS (512KB

block, random)

MB/s (512KB

block, random)

MB/s (large block,

sequential)

FC / 15K 163-178 151-169 9.7-10.8 97-123 49.7-63.1 73.5-127.5

SAS / 15K 188-203 175-192 11.2-12.3 115-135 58.9-68.9 91.5-126.3

FC / 10K 142-151 130-143 8.3-9.2 80-104 40.9-53.1 58.1-107.2

SAS / 10K 142-151 130-143 8.3-9.2 80-104 40.9-53.1 58.1-107.2

SAS/SATA / 7200 73-79 69-76 4.4-4.9 47-63 24.3-32.1 43.4-97.8

SATA / 5400 57 55 3.5 44 22.6

SSD To evaluate SSD RAID performance use the SSD version of the calculator

Percent MB KB B

100% 92 93,696 95,944,704

80% 73 74,957 76,755,763

50% 46 46,848 47,972,352

Current Drive Performance

• I/O Read / I/O Write Settings
• RAID Type: RAID 6

• Drive Capacity: 146GB

• Single Drive Performance: 6,144 MB/s

• Single Drive Cost: 40

• Number of drives per RAID group: 16

• Number of RAID groups: 1

• Read operations (%): 0 (100% - Write Efficiency, In this case it would be between 0% and 1%)

© Fred Hutchinson Cancer Research Center 37

Percent MB KB B

100% 92 93,696 95,944,704

80% 73 74,957 76,755,763

50% 46 46,848 47,972,352

Performance History
Monitoring history as thing happen when we are not in front of the monitors.

CPU User

• We want to make sure that we are not running at full CPU. I try to keep the server below 50% with a max

spike of 80%.

• aliasByNode(servers.{virtual,physical}.$ServerName-a.aggregation-cpu-average.cpu-user,2)

• aliasByNode(servers.{virtual,physical}.$ServerName-b.aggregation-cpu-average.cpu-user,2)

© Fred Hutchinson Cancer Research Center 39

Disk Read

• Short duration spikes are OK, as long as there is no real sustained disk reads.

• aliasByNode(servers.{virtual,physical}.sqltest-a.disk-xvdb1.disk_octets.read,2)

• aliasByNode(servers.{virtual,physical}.sqltest-b.disk-xvdb1.disk_octets.read,2)

© Fred Hutchinson Cancer Research Center 40

Disk Write

• Short duration spikes are OK, as long as there is no real sustained disk writes causing pending writes to

build up.

• aliasByNode(servers.{virtual,physical}.sqltest-a.disk-xvdb1.disk_octets.write,2)

• aliasByNode(servers.{virtual,physical}.sqltest-b.disk-xvdb1.disk_octets.write,2)

© Fred Hutchinson Cancer Research Center 41

Disk I/O Time

• The vacuum spike to 91% is OK, but I will be reducing it to 80% so that other long queries should not be

affected as much by the AutoVacuum.

• aliasByNode(scale(servers.{virtual,physical}.$ServerName-a.disk-xvdb1.disk_io_time.io_time,0.1),2)

• aliasByNode(scale(servers.{virtual,physical}.$ServerName-b.disk-xvdb1.disk_io_time.io_time,0.1),2)

© Fred Hutchinson Cancer Research Center 42

Disk Pending Write

• Short pending writes are OK, we just don’t want to see long running pending items.

• aliasByNode(servers.{virtual,physical}.$ServerName-a.disk-xvdb1.pending_operations,2)

• aliasByNode(servers.{virtual,physical}.$ServerName-b.disk-xvdb1.pending_operations,2)

© Fred Hutchinson Cancer Research Center 43

Write Efficiency

• Random write is low efficiency, sequential write is high efficiency. We want to see high efficiency.

• alias(offset(scale(asPercent(servers.{virtual,physical}.$ServerName-a.disk-

xvdb1.disk_ops.write,servers.{virtual,physical}.$ServerName-a.disk-xvdb1.disk_octets.write),-

1),1),"$ServerName-a")

• alias(offset(scale(asPercent(servers.{virtual,physical}.$ServerName-b.disk-

xvdb1.disk_ops.write,servers.{virtual,physical}.$ServerName-b.disk-xvdb1.disk_octets.write),-

1),1),"$ServerName-b")

© Fred Hutchinson Cancer Research Center 44

Free Disc Space

• We need to make sure that we don’t run the server out of space due to bloating of the tables.

• aliasByNode(servers.{virtual,physical}.$ServerName-a.df-pgdata_local.df_complex-free,2)

• aliasByNode(servers.{virtual,physical}.$ServerName-b.df-pgdata_local.df_complex-free,2)

© Fred Hutchinson Cancer Research Center 45

Granted Locks

• If a table should be AutoVacuum’ed but is not, it could be because our long running transactions are

holding locks on that table. We want to see if there are any Exclusive locks on the tables that should be

AutoVacuum’ed.

© Fred Hutchinson Cancer Research Center 46

Custom Table Settings
Adjusting the AutoVacuum per Table

Custom Table Settings

• This query allows us to retrieve all the custom

table settings for all tables, excluding the

tables located in pg_catalog and the

information_schema.

© Fred Hutchinson Cancer Research Center 48

SELECT

current_setting('cluster_name'::text)

AS cluster_name,

current_database() AS database_name,

pn.nspname AS schema_name,

pc.relname AS table_name,

quote_ident(pn.nspname::text) ||

'.'::text ||

quote_ident(pc.relname::text)

AS "Table Name",

unnest(pc.reloptions) AS "Table Setting"

FROM pg_class pc

JOIN pg_namespace pn

ON pn.oid = pc.relnamespace

WHERE pc.reloptions IS NOT NULL

AND (pn.nspname <> ALL (ARRAY [

'pg_catalog'::name, 'information_schema':: name]));

Custom Table Settings

• The larger the table, the larger the threshold

for AutoVacuum. For very large table we might

want to lower this threshold. Instead of doing

this for the entire server, we can do it for

individual tables.

© Fred Hutchinson Cancer Research Center 49

ALTER TABLE IF EXISTS ONLY

delphi_importer_venice_odm.dataset

SET

(

autovacuum_vacuum_scale_factor=0.01,

toast.autovacuum_vacuum_scale_factor=0.01

);

Custom Table Settings

© Fred Hutchinson Cancer Research Center 50

Default

Custom

