
Postgres and the Artificial Intelligence Landscape

BRUCE MOMJIAN

This presentation explains how to do machine learning inside the

Postgres database.

https://momjian.us/presentations Creative Commons Attribution License

Last updated: September, 2020

1 / 39

Outline

1. What is artificial intelligence?

2. Machine learning and deep learning

3. Demonstration using Postgres

4. Hardware/software efficiency

5. Tasks

6. Why use a database?

2 / 39

1. What is Artificial Intelligence?

Machines that mimic "cognitive" functions that humans associate

with the human mind, such as "learning" and "problem solving".

https://en.wikipedia.org/wiki/Artificial_intelligence

3 / 39

https://en.wikipedia.org/wiki/Artificial_intelligence

What is Artificial about Artificial Intelligence?

If only the physical world exists, then human intelligence only differs

from machine intelligence because it has not naturally developed. It

hence differs only in how it is created. Human free will becomes an

illusion.

https://www.theatlantic.com/magazine/archive/2016/06/theres-no-such-thing-as-free-will/480750/

4 / 39

https://www.theatlantic.com/magazine/archive/2016/06/theres-no-such-thing-as-free-will/480750/

History of Artificial Intelligence (AI)

• Pre-computer philosophy

• Robotics

• Turing test

• Expert systems

• AI winter

• Like fusion energy, it is always ten years away

https://en.wikipedia.org/wiki/History_of_artificial_intelligence

5 / 39

https://en.wikipedia.org/wiki/History_of_artificial_intelligence

2. Machine Learning and Deep Learning

Artificial Intelligence

Machine Learning

Deep
Learning

The most comprehensive video I have seen about machine learning is
at https://www.youtube.com/watch?v=r0Ogt-q956I. 6 / 39

https://www.youtube.com/watch?v=r0Ogt-q956I

Machine Learning

Initial State

Data
Training

ResultRequest

Neuron

Tensor

Weight

https://www.verypossible.com/insights/machine-learning-algorithms-what-is-a-neural-network

7 / 39

https://www.verypossible.com/insights/machine-learning-algorithms-what-is-a-neural-network

Unsupervised Machine Learning

Initial State

Data
Training

ResultRequest

without Results

https://medium.com/@machadogj/ml-basics-supervised-unsupervised-and-reinforcement-learning-b18108487c5a

8 / 39

https://medium.com/@machadogj/ml-basics-supervised-unsupervised-and-reinforcement-learning-b18108487c5a

Supervised Machine Learning

Initial State

Data
Training

ResultRequest

with Results

9 / 39

Reinforcement Machine Learning

Initial State

Data
Training

ResultRequest

with Results

10 / 39

Deep Learning

Initial State

Data
Training

Request Result

https://www.zendesk.com/blog/machine-learning-and-deep-learning/

11 / 39

https://www.zendesk.com/blog/machine-learning-and-deep-learning/

3. Demonstration Using Postgres:

Does an Integer Have Non-Leading Zeros?

• 31903 is true

• 82392 is false

12 / 39

Install PL/Perl

CREATE EXTENSION IF NOT EXISTS plperl;

All queries in this presentation can be downloaded from https://momjian.
us/main/writings/pgsql/AI.sql.

13 / 39

https://momjian.us/main/writings/pgsql/AI.sql
https://momjian.us/main/writings/pgsql/AI.sql

Generate Tensor

CREATE OR REPLACE FUNCTION generate_tensor(value INTEGER)
RETURNS BOOLEAN[] AS $$

my $value = shift;
my @tensor = (

this many digits or more?
(map { length($value) >= $_ } 1..10),
divisible by zero?
$value % 10 == 0,

);
map to t/f
grep { $_ = ($_ ? ’t’ : ’f’) } @tensor;
return encode_typed_literal(\@tensor, ’boolean[]’);

$$ LANGUAGE plperl STRICT;

14 / 39

Create and Populate Input Layer

CREATE TABLE training_set(value INTEGER, training_output BOOLEAN,
tensor BOOLEAN[]);

WITH randint (value) AS
(

SELECT (random() * (10 ^ (random() * 8 + 1)::integer))::integer
FROM generate_series(1, 10000)

)
INSERT INTO training_set SELECT value, value::text LIKE ’%0%’,

generate_tensor(value)
FROM randint;

15 / 39

Input Layer

SELECT * FROM training_set LIMIT 10;
value | training_output | tensor

-----------+-----------------+-------------------------
28762748 | f | {t,t,t,t,t,t,t,t,f,f,f}
44550313 | t | {t,t,t,t,t,t,t,t,f,f,f}

72 | f | {t,t,f,f,f,f,f,f,f,f,f}
4891026 | t | {t,t,t,t,t,t,t,f,f,f,f}

3413 | f | {t,t,t,t,f,f,f,f,f,f,f}
62 | f | {t,t,f,f,f,f,f,f,f,f,f}

86517976 | f | {t,t,t,t,t,t,t,t,f,f,f}
967 | f | {t,t,t,f,f,f,f,f,f,f,f}

636667644 | f | {t,t,t,t,t,t,t,t,t,f,f}
36419 | f | {t,t,t,t,t,f,f,f,f,f,f}

16 / 39

Generate Weights for Tensor

CREATE OR REPLACE FUNCTION generate_weight(query TEXT, desired_output BOOLEAN)
RETURNS REAL[] AS $$

my $rv = spi_exec_query(shift);
my $status = $rv->{status};
my $nrows = $rv->{processed};
my $desired_output = shift;
my @success_neurons = ();
my @desired_neurons = ();
my $desired_input = 0;

17 / 39

Generate Weights for Tensor

foreach my $rn (0 .. $nrows - 1) {
my $row = $rv->{rows}[$rn];
my $tensor = $row->{(sort keys %$row)[0]};
my $training_output = $row->{(sort keys %$row)[1]};
only process training rows that match our desired output
foreach my $neuron (0 .. $#$tensor)
{

$success_neurons[$neuron] //= 0;
$desired_neurons[$neuron] //= 0;
Neuron value matches desired output value; does
the value match the desired output?
if ($tensor->[$neuron] eq $desired_output)
{

Prediction success/failures that match our
desired output.
$success_neurons[$neuron]++

if ($training_output eq $desired_output);
$desired_neurons[$neuron]++;

}
}
$desired_input++ if ($training_output eq $desired_output);

}

18 / 39

Generate Weights for Tensor

my @weight = ();
my $sum = 0;

compute percentage of tests that matched requested outcome
foreach my $neuron (0 .. $#success_neurons) {

$weight[$neuron] = $desired_neurons[$neuron] != 0 ?
$success_neurons[$neuron] / $desired_neurons[$neuron] :
0;

$sum += $weight[$neuron];
}

balance weights so they total the observed probability;
this prevents an overly-predictive output value from skewing
the results.
foreach my $neuron (0 .. $#weight) {

$weight[$neuron] = ($weight[$neuron] / $sum) *
($desired_input / $nrows);

}
return encode_typed_literal(\@weight, ’real[]’);

$$ LANGUAGE plperl STRICT;

19 / 39

Create Tensor_Mask

Return weights where our neuron value matches the desired output
CREATE OR REPLACE FUNCTION tensor_mask(tensor BOOLEAN[], weight REAL[],

desired_output BOOLEAN)
RETURNS REAL[] AS $$

my $tensor = shift;
my $weight = shift;
my $desired_output = shift;
my @result = ();

elog(ERROR, ’tensor and weight lengths differ’)
if ($#$tensor != $#$weight);

foreach my $i (0 .. $#$tensor) {
push(@result,

($tensor->[$i] eq $desired_output) ?
$weight->[$i] : 0);

}
return encode_typed_literal(\@result, ’real[]’);

$$ LANGUAGE plperl STRICT;

20 / 39

Create Sum_Weight

CREATE OR REPLACE FUNCTION sum_weight(weight REAL[])
RETURNS REAL AS $$

my $weight = shift;
my $sum = 0;
sum weights
foreach my $i (0 .. $#$weight) {

$sum += $weight->[$i];
}
return encode_typed_literal($sum, ’real’);

$$ LANGUAGE plperl STRICT;

21 / 39

Create Soft_Max

Normalize the values so the probabilities total one
CREATE OR REPLACE FUNCTION softmax(val1 REAL, val2 REAL)
RETURNS REAL[] AS $$

my $val1 = shift;
my $val2 = shift;
my $sum = $val1 + $val2;
What percentge is each of the total?
my @result = (

$val1 / $sum,
$val2 / $sum,

);
return encode_typed_literal(\@result, ’real[]’);

$$ LANGUAGE plperl STRICT;

22 / 39

Store Weights

CREATE TABLE tensor_weight_true AS
SELECT generate_weight(’SELECT tensor AS x1, training_output AS x2

FROM training_set’, true) AS weight;

CREATE TABLE tensor_weight_false AS
SELECT generate_weight(’SELECT tensor AS x1, training_output AS x2

FROM training_set’, false) AS weight;

23 / 39

Stored Weights

SELECT * FROM tensor_weight_true;
weight

{0.020473005,0.021917565,0.024002228,0.026247077,0.028482921, \
0.030471962,0.032726202,0.034238704,0.036621932,0,0.0641184}

SELECT * FROM tensor_weight_false;
weight

{0,0.0820682,0.07662672,0.074060954,0.07129263,0.068018064, \
0.06497674,0.061864104,0.059269458,0.058057636,0.06446551}

24 / 39

Test 100

WITH test_set (checkval) AS
(

SELECT 100
)
SELECT softmax(

sum_weight(
tensor_mask(

generate_tensor(checkval),
tensor_weight_true.weight,
true)),

sum_weight(
tensor_mask(

generate_tensor(checkval),
tensor_weight_false.weight,
false))

)
FROM test_set, tensor_weight_true, tensor_weight_false;

softmax

{0.22193865,0.77806133}

25 / 39

Test 101

WITH test_set (checkval) AS
(

SELECT 101
)
SELECT softmax(

sum_weight(
tensor_mask(

generate_tensor(checkval),
tensor_weight_true.weight,
true)),

sum_weight(
tensor_mask(

generate_tensor(checkval),
tensor_weight_false.weight,
false))

)
FROM test_set, tensor_weight_true, tensor_weight_false;

softmax

{0.11283657,0.88716346}

26 / 39

Test 487234987

WITH test_set (checkval) AS
(

SELECT 487234987
)
SELECT softmax(

sum_weight(
tensor_mask(

generate_tensor(checkval),
tensor_weight_true.weight,
true)),

sum_weight(
tensor_mask(

generate_tensor(checkval),
tensor_weight_false.weight,
false))

)
FROM test_set, tensor_weight_true, tensor_weight_false;

softmax

{0.68860435,0.31139567}

27 / 39

Test One Thousand Values

WITH test_set (checkval) AS
(

SELECT (random() * (10 ^ (random() * 8 + 1)::integer))::integer
FROM generate_series(1, 1000)

),

28 / 39

Second Table Expression

ai (checkval, output_layer) AS
(

SELECT checkval, softmax(
sum_weight(tensor_mask(generate_tensor(checkval),

tensor_weight_true.weight, true)),
sum_weight(tensor_mask(generate_tensor(checkval),

tensor_weight_false.weight, false))
)
FROM test_set, tensor_weight_true, tensor_weight_false

),

29 / 39

Third Table Expression

analysis (checkval, cmp_bool, output_layer, accuracy) AS
(

SELECT checkval, checkval::text LIKE ’%0%’, output_layer,
CASE checkval::text LIKE ’%0%’
-- higher/lower than random chance
WHEN true THEN output_layer[1] - 0.5
ELSE output_layer[2] - 0.5
END

FROM ai
)

30 / 39

Final Table Expression

SELECT * FROM analysis
UNION ALL
SELECT NULL, NULL, NULL, AVG(accuracy)
FROM analysis
UNION ALL
SELECT NULL, NULL, NULL, SUM(CASE WHEN accuracy > 0 THEN 1 END)::REAL/COUNT(*)
FROM analysis;
checkval | cmp_bool | output_layer | accuracy
-----------+----------+--------------------------+-----------------------

6 | f | {0.029198222,0.9708018} | 0.47080177068710327
61859931 | f | {0.5459184,0.4540816} | -0.045918405055999756
53138008 | t | {0.5459184,0.4540816} | 0.045918405055999756

727 | f | {0.11283657,0.88716346} | 0.3871634602546692
33397006 | t | {0.5459184,0.4540816} | 0.045918405055999756
38380069 | t | {0.5459184,0.4540816} | 0.045918405055999756
8915576 | f | {0.4306789,0.5693211} | 0.06932109594345093

446 | f | {0.11283657,0.88716346} | 0.3871634602546692
…

(null) | (null) | (null) | 0.15426481181383134
(null) | (null) | (null) | 0.722

31 / 39

4. Hardware/Software Efficiency: Software

• Madlib

• Matlab

• Tensorflow

• Weka

• Scikit,
• using PL/Python, https://www.cybertec-postgresql.com/en/

machine-learning-in-postgresql-part-1-kmeans-clustering/
• client-side, https://kb.objectrocket.com/postgresql/

machine-learning-with-python-and-postgres-1114

32 / 39

https://www.cybertec-postgresql.com/en/machine-learning-in-postgresql-part-1-kmeans-clustering/
https://www.cybertec-postgresql.com/en/machine-learning-in-postgresql-part-1-kmeans-clustering/
https://kb.objectrocket.com/postgresql/machine-learning-with-python-and-postgres-1114
https://kb.objectrocket.com/postgresql/machine-learning-with-python-and-postgres-1114

GPU

Request Result

• Tensors can have millions of neurons

• Deep learning can use thousands of tensor layers

• Every neuron passes its data to every neuron in the next layer

• This requires a lot of repetitive calculations

• GPUs are designed to efficiently perform simultaneous repetitive

computations

33 / 39

5. Tasks

• Chess

• Jeopardy

• Voice recognition

• Search

• Recommendations

• Image detection

• Weather forecasting

34 / 39

Fraud Detection Example

Choose attributes:

• Charge amount

• Magnetic swipe, chip, pin, online charge

• Vendor distance from chargee billing address

• Distance from last chargee charge

• Vendor country

• Previous charges to this vendor for chargee

• Previous fraudulent charges by vendor

https://www.youtube.com/watch?v=ztVcNMg7TFs

35 / 39

https://www.youtube.com/watch?v=ztVcNMg7TFs

Fraud Detection Steps

1. Choose attributes

2. Create machine learning neurons for each attribute

3. Create training data, with the required attributes of each

transactions and its outcome, i.e., valid or fraudulent

4. Feed the training data into the machine to set the weights of
each neuron, based on how much the neuron’s attribute predicts

the validity or fraudulence of transactions

5. Start feeding real data into the machine and get results

6. Feed correct and incorrect results back into the neurons to

improve the accuracy of the weights, and to adjust for changes

in the environment

36 / 39

6.Why Use a Database?

• Machine learning requires a lot of data

• Most of your data is in your database

• Why not do machine learning where your data is, in a database?

37 / 39

Advantages of doing Machine Learning in a Database?

• Use previous activity as training data

• Have seamless access to all your current data

• Take immediate action on AI results, e.g., commit transaction

only if likely non-fraudulent

• AI can benefit from database transactions, concurrency, backup

• Other benefits include complex data types, full text search, GIS,

indexing
• Postgres can do GPU-based computations inside the database

(https://momjian.us/main/blogs/pgblog/2020.html#June_29_2020)

38 / 39

https://momjian.us/main/blogs/pgblog/2020.html#June_29_2020

Conclusion

https://momjian.us/presentations https://www.flickr.com/photos/corneveaux/

39 / 39

