
© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Babelfish for PostgreSQL

Rob Verschoor

Principal Database Engineer

AWS

Chandra Sekhar Pathivada

Sr. Database Specialist Solutions Architect

AWS

Agenda

• Introducing Babelfish for PostgreSQL

• Open-source project

• Deployment model

• Migration steps

• Supported T-SQL features

• Architecture

• T-SQL vs. PostgreSQL semantics

Introducing Babelfish for PostgreSQL

Accelerate migrations

Lower risk and complete

migrations faster, saving you

months to years of work

Translation layer enables

PostgreSQL to understand Microsoft

SQL Server’s proprietary T-SQL

Keep existing queries

Run T-SQL code side-by-side with new

open source functionality and continue

developing with familiar tools

Freedom to innovate

Run SQL Server applications on PostgreSQL with little to no code changes

T-SQL

What is Babelfish for PostgreSQL?

Babelfish for PostgreSQL is:

• “Babelfish is a migration accelerator providing semantically correct execution of T-SQL over the

TDS protocol, natively implemented in PostgreSQL.”

• A native implementation of TDS and T-SQL, using PG building blocks

• A PostgreSQL extension (in fact, 3 extensions)

• A second endpoint in an Aurora cluster (TDS + PG ports)

• Open-source

It is not:

• A SQL ‘mapping’ proxy between the client app and PG

• A separate server

• A temporary solution for customers

• Replacing PG

Open-source project: Babelfish for PostgreSQL

Apache 2.0

and PostgreSQL licenses

Use it for any purpose, innovate,

and distribute your modifications

No vendor lock-in

Freedom from

proprietary databases

Is community driven

Available on GitHub
https://github.com/babelfish-for-postgresql

Project website

https://babelfishpg.org

Open-source project: Babelfish for PostgreSQL

https://github.com/babelfish-for-postgresql
https://babelfishpg.org/

Babelfish for PostgreSQL design tenets
G U I D I N G P R I N C I P L E S

Interoperability

Wire protocol compatibility

No compromises on correctness

Deployment model for Babelfish for PostgreSQL
H O W D O I A D D N E W F U N C T I O N A L I T Y I N M Y M I G R A T E D A P P L I C A T I O N S ?

• Home-grown applications

• Database-agnostic applications

• ISV applications

• RDS for SQL Server databases

• On-premises SQL Server databases

• Self-managed SQL Server on Amazon EC2 or Azure VMs

• Azure SQL Distributed Transaction Units

Potential migration opportunities

1. Export DDL (reverse-engineer with SSMS)

▪ Make sure to include triggers, logins, owners, and permissions (not included by default)

2. Run Babelfish Compass assessment tool on the DDL to find incompatibilities

▪ Rewrite SQL you find to be Babelfish-incompatible. Ex: SELECT..[UN]PIVOT

▪ Compass can rewrite selected features with supported T-SQL (MERGE, numeric datetime)

3. Import adjusted DDL script into Babelfish with sqlcmd

▪ No AWS SCT conversion needed! Babelfish supports T-SQL SQL/DDL syntax

▪ First set Babelfish escape hatches to ‘ignore’ with sp_babelfish_configure

4. Migrate data using AWS Database Migration Service (DMS)

▪ (Or, test with a smaller data set to test getting the app going)

5. Reconfigure the client app to connect to Babelfish instead of SQL Server

Migration Steps

• October 2021: 1.0.0 -- GA ! → PG 13.4

• February 2022: 1.1.0 → PG 13.5

• March 2022: 1.2.0 → PG 13.6

Documentation:
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish.html

Current Releases of Babelfish for PostgreSQL

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish.html

• Triggers, Stored Procedures, scalar SQL Functions, Views

• T-SQL transactional semantics, incl. nested transactions & savepoints

• Data types (money, sql_variant, 3-millisecond datetime)

• Control-of-Flow statements (e.g. GOTO, TRY/CATCH)

• Table Data Types, Table Parameters and Table-Valued functions

• Static cursors

• Computed columns

• Dynamic SQL (EXEC with string param) and sp_executesql

• Application Locks

• SELECT…FOR XML { RAW | PATH }

• Multiple results sets per procedure/batch

Supported T-SQL features
S Q L S E R V E R - S P E C I F I C F E A T U R E S

• #Temporary Tables

• Built-in functions

• IDENTITY columns

• Case-insensitive identifiers

• Collation support

• DML OUTPUT clause support

• @@ERROR code mapping

• CREATE DATABASE; USE <db>

• SQL Server catalogs (selection)

• SSL/TLS; Kerberos

Supported T-SQL features
S Q L S E R V E R - S P E C I F I C F E A T U R E S

• TIMESTAMP/ROWVERSION columns

• CREATE USER

• CREATE SCHEMA…AUTHORIZATION…

• GRANT/REVOKE object permissions to a DB user

▪ SELECT,INSERT,UPDATE,DELETE,REFERENCES,EXECUTE

• Trigger functions: COLUMNS_UPDATED(), UPDATE()

• ISJSON(), JSON_QUERY(), JSON_VALUE()

• Additional SQL Server catalogs; system stored procs; INFORMATION_SCHEMA

• Coming: support for DMS (initial load)

v.1.2.0 : Supported T-SQL features
S Q L S E R V E R - S P E C I F I C F E A T U R E S

• Use of in-database encryption

• MARS, Database Mail, Geospatial, SQLCLR, Filetable, Columnstore

• Dependency on MSDTC OR SQL Server Agent

• Limited use case support with SSRS, SSIS, or SSAS

• Dependency on remote servers (linked servers)

• Dependency on OPENJSON()

• Dependency on OPENXML(), XQuery, Xpath

• Dependency on Bulk Copy API (bcp-in, BULK-INSERT)

• SQL Server Parallel Data Warehouse
• (see Aurora/PG documentation for more)

Currently not supported

• Limited support for SSMS (Query Editor works)

• DBeaver (recommended GUI tool)

▪ Free, open source and works on all major OSes (Win/Mac/Linux)

• sqlcmd (recommended for script execution)

• With other tools, your mileage will vary

• High priority to support other tools post GA (such as VS Code)

Support for SQL Development Tools

Babelfish for PostgreSQL architecture

PostgreSQL
Process

Utility

Hook

p
g

_
st

a
t_

st
a

te
m

e
n

ts

Parser

Hook

babelfishpg_common datatype

babelfishpg_money datatype

b
a

b
e

lf
is

h
p

g
_
ts

q
l

babelfishpg_tds

SQL Server/TDS client

PostgreSQL client

port 5432

port 1433

Protocol

Hook

Babelfish Architecture

How does a T-SQL procedure work in Babelfish?

1. Execute CREATE PROCEDURE with full T-SQL syntax, when

connected through the TDS port

2. Babelfish creates a PostgreSQL procedure

3. The procedure is executed from T-SQL (with EXECUTE), with T-SQL

semantics

4. Alternatively, the procedure can also be executed for PG (with

CALL). In this case, transactional semantics will be those of PG

Detecting you’re running on Babelfish

Users can detect programmatically whether their T-SQL application is

running on Babelfish:

SELECT CAST(SERVERPROPERTY('Babelfish') AS VARCHAR)

• Returns 1 when running on Babelfish, NULL when running on SQL Server

SELECT CAST(SERVERPROPERTY('BabelfishVersion') AS VARCHAR)

• Babelfish’s version number, e.g. 1.0.0 for the GA release

Transactional semantics: SQL Server vs. PostgreSQL (PG)

SQL Server:

1> create table t1 (a int not null unique)
2> go
1> begin tran
2> insert into t1 values(1)
3> insert into t1 values(2)
4> update t1 set a = 3 -- causes duplicate key error
5> commit
6> go

Msg 2627, Level 14, State 1, Server EC2AMAZ-5Q6FMIK, Line 4Violation of UNIQUE KEY constraint
'UQ__t1__3BD0198F21AFC10E'. Cannot insert duplicate key in object 'dbo.t1'. The duplicate key
value is (3).The statement has been terminated.

1> select * from t1
2> go
a

1
2

(2 rows affected)

By default, SQL Server keeps the transaction open

and rolls back only the statement causing the error

Result in SQL Server: 2 rows

Transactional semantics: SQL Server vs. PG

PostgreSQL:
postgres=> create table t1 (a int not null unique);

CREATE TABLE

postgres=> DO $$

postgres$> begin

postgres$> insert into t1 values (1);

postgres$> insert into t1 values (2);

postgres$> update t1 set a = 3; -- causes duplicate key error

postgres$> commit;

postgres$> end$$;

ERROR: duplicate key value violates unique constraint "t1_a_key"

DETAIL: Key (a)=(3) already exists.

CONTEXT: SQL statement "update t1 set a = 3"

PL/pgSQL function inline_code_block line 5 at SQL statement

postgres=> select * from t1;

a

(0 rows)

PG rolls back the entire transaction

Result in PG: 0 rows

Transactional semantics: SQL Server vs. PG

Babelfish solution:

• put an (internal) savepoint before each DML statement

• in case of an error, roll back to that savepoint

• the savepoint consumes a transaction ID

Error/Exception handling: SQL Server vs. PG

SQL Server:

1> create table t2 (a int not null unique)
2> go
1> begin tran
2> insert into t2 values (123)
3> insert into t2 values (123) -- will cause duplicate key error
4> insert into t2 values (456)
5> commit
6> print 'more processing here!'
7> go

Msg 2627, Level 14, State 1, Server EC2AMAZ-EULFEOJ, Line 4
Violation of UNIQUE KEY constraint 'UQ__t2__3BD0198F04E3D22F'. Cannot insert duplicate key in object
'dbo.t2'. The duplicate key value is (123).
The statement has been terminated.

more processing here!

1> select * from t2
2> go
a

123
456

(2 rows affected)

Result in SQL Server: after error, subsequent

statements are still executed (by default)

By default, SQL Server continues with the next

statement after an error;

To take action, must check @@ERROR explicitly

Error/Exception handling: SQL Server vs. PG
PostgreSQL:

postgres=> create table t2 (a int not null unique);
CREATE TABLE
postgres=> DO $$
postgres$> begin
postgres$> insert into t2 values (123);
postgres$> insert into t2 values (123); -- will cause duplicate key error
postgres$> insert into t2 values (456);
postgres$> commit;
postgres$> raise notice 'more processing here!';
postgres$> end;
postgres$> $$;

ERROR: duplicate key value violates unique constraint "t2_a_key"
DETAIL: Key (a)=(123) already exists.
CONTEXT: SQL statement "insert into t2 values (123)"
PL/pgSQL function inline_code_block line 4 at SQL statement

postgres=> select * from t2;
a

(0 rows)

When an error occurs, PG jumps to the exception

handler and leaves the block; subsequent

statements are not executed

Not executedX

Error/Exception handling: SQL Server vs. PG

Babelfish solution:

• Wrap each DML statement in an (internal) block with a dummy exception handler

• In case of an error, control passes to the next block ➔ the next statement

• Each such block consumes a transaction ID

DO $$
begin

begin
insert into t2 values (123);
exception when others then null;
end;

begin
insert into t2 values (456);
exception when others then null;
end;

$$

Error code mapping from PG to SQL Server
Babelfish (unchanged from SQL Server):

1> create table t3 (a int not null unique)
2> go
1> begin tran
2> insert into t3 values (1)
3> insert into t3 values (1) -- will cause duplicate key error
4> if @@error = 2627
5> begin
6> print 'constraint violation, rolling back xact!'
7> rollback
8> end
9> else
10> commit
11> go

Msg 2627, Level 14, State 1, Server BABELFISH, Line 4
duplicate key value violates unique constraint "t3_a_key"

constraint violation, rolling back xact!

1> select * from t3
2> go
(0 rows affected)

Xact rolled back

PG SQLSTATE value is ‘23505’; mapped to 2627

by Babelfish, so existing T-SQL code can be kept

Not only mapping @ERROR value,

but also severity

Error code mapping from PG to SQL Server

• Babelfish currently maps 100+ error codes from PG to SQL Server

▪ including @@ERROR = 0

• Also mapping error severity: affects whether aborting statement or xact

• When not mapped, @@ERROR contains a large number

• E.g. for syntax error:

1> select select

2> go

Msg 33557097, Level 16, State 1, Server BABELFISH, Line 1

syntax error near 'select' at line 1 and character position 7

1> select @@error

2> go

error

33557097

(1 rows affected)

Migrating SQL Server database structure

• Babelfish provides a ‘server experience’ similar to SQL Server

▪ Existing T-SQL code and existing client apps do not need to be changed

▪ There’s master, tempdb, msdb, user databases, sysdatabases & sp_helpdb

▪ Can run CREATE DATABASE; USE <database>; SELECT DB_NAME() from T-SQL

• How this is done:

▪ The Aurora/PG cluster contains a PG database named babelfish_db

▪ When connecting to the TDS port, the connection is placed in this PG database

▪ SQL Server databases and schemas are mapped to schemas in this PG database

▪ The babelfish_db database and the schema name mapping are transparent to the T-SQL user

▪ Users can choose between single-db and multi-db mode, which affects the schema name

mapping

– This is relevant only when connecting to the PG port; in T-SQL (through TDS port), the original schema names can

be used

Migrating SQL Server database structure

• Multi-db mode: schema names from SQL Server user DB are mapped to different PG schema names

Migrating SQL Server database structure

• Single-db mode: schema names from SQL Server user DB remain unchanged in PG

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Aurora for SQL Server DBAs

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 31

Agenda

• Architecture

• WAL Comparison with SQL Server

• Storage Architecture

• Read Replicas

• Aurora Failover

• Backups

• Global Database

• Fast Clones

• Monitoring

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Architecture

Aurora Architecture

Storage

S
to

ra
g

e

n
o

d
e

s

Shared storage volume

SQL

Transactions

Caching

Database

node

Storage

Processing

Amazon Aurora

8KB Page

Aurora

Storage

l1

l2

l3
No checkpoints ☺

SQL Server

Page-1

Page-2

Page-3

checkpoint

datafile

l1
l2 WAL

archiv

e

8KB Page

update my_table set my_col = 6;

l1

Memory

WAL Cache

l1

l2

l3

8KB Page

Recovery

coalesce

8KB Page
8KB Page

update my_table set my_col = 6;

l3
L

o

g

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Read Replicas

Read Replicas

Managed DB service, no OS or
filesystem level access

Connect to writer using Cluster
(DNS) Endpoint – always points
to writer!

Round robin load balancing for
reads using Reader (DNS)
Endpoint (excludes writer)

Custom (DNS) Endpoints, read
replica auto scaling (CPU &
connections) supported as well

AZ 1 AZ 2 AZ 3

SHARED CLUSTER STORAGE VOLUME

Writer

Transactions

Caching

SQL

Reader

Transactions

Caching

SQL

Reader

Transactions

Caching

SQL

Cluster

Endpoint

Reader

Endpoint

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Aurora Failover

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Aurora Failover

• When Writer becomes unavailable...
• First attempt will be to restart the PostgreSQL process

• If that fails, the failed Writer will be demoted to Reader and then a

Reader will be promoted

• What if there are no read replicas?
• The restart will be attempted

• If the writer node is not recoverable?
• Then a rebuild will take place – downtime of up to 10 minutes

• This is called “Host Replacement”

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Faster, more predictable failover with Amazon Aurora

App
RunningFailure Detection DNS Propagation

Recovery

Database
Failure

Amazon RDS for PostgreSQL is good: failover times of ~60 seconds

Replica-Aware App Running

Failure Detection DNS Propagation

Recovery

Database

Failure

Amazon Aurora is better: failover times < 30 seconds

1 5 - 2 0 s e c 3 - 1 0 s e c

App

Running

1 5 - 2 0 s e c 3 0 - 4 0 s e c

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Backups

Full

SQL Server Backups

Diff
Diff Diff

Full

Diff

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora Continuous Backup

• Take periodic snapshot of each segment in parallel; stream the logs to Amazon S3

• Backup happens continuously without performance or availability impact

• At restore, retrieve the appropriate segment snapshots and log streams from S3 to

storage nodes

• Apply log streams to segment snapshots in parallel and asynchronously

Segment snapshot Log records

Recovery point

Segment 1

Segment 2

Segment 3

Time

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Global Database

Amazon Aurora Global Database

Region A

Availability Zone 3Availability Zone 1 Availability Zone 2

Aurora storage

RO

Application

RW

Application

RO

Application

Replication
servers

Region B

Availability Zone 3Availability Zone 1 Availability Zone 2

Replication
agents Aurora storage

R

O

Applicatio

n

Applicatio

n

R

O

Applicatio

n

R

O

Region C

Availability Zone 3Availability Zone 1 Availability Zone 2

Replication
agents Aurora storage

R

O

Applicatio

n

Applicatio

n

R

O

Region D

Availability Zone 3Availability Zone 1 Availability Zone 2

Replication
agents Aurora storage

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fast Clones

Availability Zone 2Availability Zone 1 Availability Zone 3

RO

Application

Fast clones

RW

Application

RW

Analytics

application

Write log

records
Read

blocks

A
u

ro
ra

st
o

ra
g

e

Primary storage

Clone storage

Clone

Write Read

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Monitoring

Monitoring
• Cloud Watch

• Performance Insights

• Pgbadger

• Pg_collector , available at github

stat tables

Monitor current activity Pg_stat_activity

Monitor Queries pg_stat_statements

IO activity on tables and

indexes

Pg_stat_io_all_tables

Pg_stat_io_all_indexes

Row count , statistics , vacuum

across all the tables

Pg_stat_user_tables

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank You

