
Do you vacuum everyday?
“HINT: Stop the postmaster and vacuum that database in single-user mode.”
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Speaker introduction

Working with PostgreSQL since it was called Postgres95 (and also played around with 
Postgres 4.2 - without the "SQL" - a little before that). 

My oldest surviving post on postgresql-hackers@ mailing list archives is from January 1998, 
proposing using index for fast ORDER BY queries with LIMIT.

The first DBA at Skype, where I wrote patches for making VACUUM able to work on more 
than one table in parallel and invented the sharding and remote call language pl/proxy to 
make it easy to use PostgreSQL in an infinitely scalable way. 

Have written  books, PostgreSQL 9 Admin Cookbook and PostgreSQL Server Programming

After Skype I did 10+ years of PostgreSQL consulting all over the world as part of 
2ndQuadrant.

For last three years he has been a PostgreSQL Database Engineer at Google working mostly 
with Cloud SQL.
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hannuk@google.com
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VACUUM and MVCC

● What is MVCC 

● History, origins

● What does VACUUM do

● When things can go wrong - BLOAT and WRAPAROUND

● Why PostgreSQL MVCC is still awesome
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MVCC the PostgreSQL way

● Tuples have “lifetime”

● All data stays in same Heap file

● Each transaction sees different set of tuples

● DEAD tuples cleaned up once invisible for all

● RECENTLY_DEAD tuples cause bloat

● Basic architecture is very clean

https://www.interdb.jp/pg/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html


Quick History of MVCC

● Started as full-history database 

● Nowadays called TEMPORAL TABLES

● Had (tmin, tmax) instead of (xmin, xmax)

● So just a single write transaction

● Was changed to current way in 6.3

● Incremental improvements 

● Like HOT updates, mini-vacuum, …



What does VACUUM do

● Cleanup

○ Frees space used by dead rows

○ Cleans indexes

● FREEZE

○ FEEZE txids in live rows

○ Used to be xmin=2, now pair of flags

○ May be something else in the future



When things can go wrong 

● If Cleanup is failing you get 

○ BLOAT

● When FREEZE is failing you get 

○ Blocked DDL

○ WRAPAROUND



Why PostgreSQL MVCC is still awesome

● keeping all housekeeping out of critical path

● Simplicity of concept, relative simplicity of 

optimisations

● Immediate ( O(1) ) commit or rollback 

● No slowdown of OLAP queries when loading 

(updating) data in parallel with

● Moore's law is dead, so doing more things in 

parallel is the only way forward



Why things can go 
wrong

● Long Transactions hold back vacuum 

● “Long Transaction” can also be 2PC

● Or it can be on Replica

● Or it can be a replication slot

● … all the above cause BLOAT and can lead to WRAPAROUND

● sometimes VACUUM is just not fast enough (So tune it!)

● … sometimes TEMP tables cause wraparound (new to me)
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How things can go 
wrong

● Everything is slowing down because of big BLOAT 

● There is big BLOAT with minor slowdown

● There is not much BLOAT but danger of WRAPAROUND

● Anti-wraparound VACUUM blocks DLL …

● … then DDL blocks main DML queries

● System goes into WRAPAROUND -->  big outage
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ERROR: database is not accepting commands to avoid wraparound data loss in database <oldest_datname>.
HINT: Stop the postmaster and vacuum that database in single-user mode.
      You might also need to commit or roll back old prepared transactions, or drop stale replication slots.



How to return to 
normality FAST

● Do not : 

○ Run in single-user mode

○ VACUUM everything

 

● Instead DO :

○ Check for VACUUM blockers, resolve any found

○ Find the database(s) with oldest transaction ids

○ Find the tables(s)  with oldest transaction ids

○ Tune Vacuum, then Vacuum the tables(s)

● once OK, tune autovacuum to keep up in the future
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What was added to 
Cloud SQL for this

● Never use Single-user mode 

● Skip truncate when close to wraparound (critical for <= v11)

● No need for superuser to terminate Autovacuum

● cloudsql.enable_maintenance_mode

● work on getting rid of 1GB limit for deleted xids
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Never user Single-user mode

● You are running completely blind

○ VACUUM VERBOSE isn’t

○ No way to see progress (except guessing from CPU, Memory and Disk Usage patterns)

○ pg_stat_progress_vacuum view is not available

● You need at least 2x the space as WAL is not rotated, as CHECKPOINTS are not running

● If you have replicas, then these are not updated and need to catch up after restarting back 
to normal mode

● Vacuuming indexes is done serially (newer versions of PostgreSQL can clean up more than 
one index in parallel)



Never user Single-user mode (Cloud SQL)

● Documented the mitigations (also sent a mail about this to pg hackers list)

● Changed the error message point to documentation

● Patched PostgreSQL to skip truncate when close to wraparound 

○ Absolutely critical for PostgreSQL versions <= v11

○ Can be worked around manually in v12+

https://www.postgresql.org/message-id/CAMT0RQTmRj_Egtmre6fbiMA9E2hM3BsLULiV8W00stwa3URvzA@mail.gmail.com


No need for superuser to terminate Autovacuum (Cloud SQL)

● PostgreSQL requires superuser to pg_cancel_backend() autovacuum

● We patch PostgreSQL to allow terminating VACUUM by any user with pg_signal_backend



No need for superuser to terminate Autovacuum (Cloud SQL)

● We added a special maintenance mode to avoid single-user

● Enabled via  cloudsql.enable_maintenance_mode = true

● Can use extra 0.5 million transaction ids

● Is throttled to discourage abuse

● Only way to remove stuck temp file once in Wraparound



Work on getting rid of 1GB limit for deleted xids

● One thing holding back vacuuming HUUGE tables is 1GB limit on number of collected deleted xids

● This limit has came up in discussions, patch to increase was rejected

● There has been some discussions around this as part of general VACUUM speedup

● One way around this I have tested is collecting initially the deleted tuple ids in a file

● When testing this, it was not measurably slower than collecting in oversized memory array



Thank you.


