
10 Years of Automating PostgreSQL. 
A Recap.
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10 Years
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15 actually!
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This Talk
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• Chronological summary 

• Different stages of automating PostgreSQL 

• How the technological zeitgeist impacted automation over time 

• Learnings (as an individual as well as an organization) 

• How to scale-out operations from dozens to thousands of machines

This Talk
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🔭The Perspective
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• Infrastructure: physical, VM-hosts, virtual infrastructures. 

• Automation technology: imperative, declarative. 

• Lifecycle mgmt. coverage of automation: CRUD service instances, service 
bindings, backups & restore, configuration, upgrades, high-availabilty, etc. 

• Assets under management: Physical / virtual machines && Pods / containers. 

• Operational responsibility: Platform operator &&|| Application developer 

• PostgreSQL at the time: HA & cluster management, upgrades, security, … 

Aspects of Interest
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Imperative 
Automation
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Stage 1: Physical servers 
~2008-2009
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🤖
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Physical Machines



• Best performance per €/$? 

• Servers are dimensioned with respect to peak loads and are  
idle 90% of the time.  

• Building clusters requires flexible data centers allowing the wiring of private 
networking. 

• Often servers have contract lifetimes of several years (off-the-shelf DCs often 
not flexible enough)  . 

• Dependency to the data center staff for some tasks→Delays

(Physical) Servers & Shell Scripts
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Shell Scripts



• Shell scripts 

• Coverage: Supporting repetitive tasks 

• Mostly manually managed OS 

• OS provided software packages

(Physical) Servers & Shell Scripts
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• Striving for a maximum uptime as fixing failed servers requires manual 
intervention and takes hours to fully recover. 

• Failures have strong impact on the Sysop’s sleep. 

• Long TTR 

• Manually executed tasks come with a human error rate

(Physical) Servers & Shell Scripts
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• PostgreSQL 

• Looking for ways to make PostgreSQL highly available 

• Blocklevel || filesystem level replication, e.g. GlusterFS 

• Sync and async replication 

• Pacemaker 

• …

(Physical) Servers & Shell Scripts
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Stage 2: Virtual servers 
~2009-2011
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🤖
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Virtual Machines



• Automanually managed Xen & XVM hosts 

• Increased hardware utilization 

• Lower barrier of entry: virtual clusters 

• VMs → More machines to manage → More automation needed

(Physical) Servers & Shell Scripts
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🧑🍳
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Chef



• Configuration management 

• Centralized cookbooks 

• Better reusability of code 

• Less code duplicity 

• More efficient that shell scripts

(Physical) Servers & Shell Scripts

23



• PostgreSQL 

• Async replication has proven to be the best all-round approach. 

• Pacemaker and, later, repmgr 

• Shared HA-PostgreSQL cluster to lower the barrier of entry (VM app servers + 
shared virtual or physical DB server) vs. dedicated virtual DB-servers.

(Physical) Servers & Shell Scripts
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• Limitations 

• State drift! Manual intervention necessary although (theoretically) covered by 
automation. 

• Increasing efforts for maintenance, refactoring and network management 
become limiting factors. 

• The team’s utilization increased. 

• Training new team members was hard as, despite of the cookbooks, still a lot of 
knowledge was necessary to operate the application systems. 

(Physical) Servers & Shell Scripts
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The Game 
Changer
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On-demand provisioning of 
dedicated PostgreSQL instances 
based on declarative automation.
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Declarative 
Automation
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Kubernetes



Shift in operational responsibility: 
App devs operate their own 

databases.
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Kubernetes CRDs



Stage 3: Virtual infrastructures 
~2012-2023
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Virtual Infrastructures 
The programmable data center
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Dealing with State



Where to store state?



Store state on a remotely 
attached block device = 

persistent disk.

🔑



Infrastructure as a Service (IaaS), e.g. OpenStack
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The data lifecycle has been 
decoupled from the VM lifecycle 
⇒ The VM becomes disposable.

🔑



Ephemeral VM, 
persistent disk.

🔑
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Predictable & repeatable 
deployments. No state-drift.
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• PostgreSQL 

• Sync and Async Streaming replication 

• Repmgr and Patroni 

• Logic backups and PITR backups

Virtual Infrastructures
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Stage 4: Container infrastructures 
~2015-2023
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Kubernetes
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• Declarative automation 

• ~ Infrastructure abstraction API 

• API standardization & Open framework for automation 

• Container isolation & Noisy neighbor issues 

• Often: VM automation underneath.

Kubernetes
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• PostgreSQL 

• Sync and Async Streaming replication 

• Patroni as a cluster manager

Container Infrastructures
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📈
The Future
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Summary & 
Conclusion
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Infrastructure
Automation 

Paradigm
Automation 
Technology

Operated by Coverage
Machines / 

Devop

Physical 
machines

Imperative Shell scripts Sysop
Simple 

repetitive 
tasks

A few dozen

(Semi-) 
Manually 
Managed  
VM Hosts

Imperative Chef Devop

Parts of the 
lifecycle. 
Devops 
centric.

A few hundred

Virtual 
Infrastructure

Declarative BOSH

Automation: 
Devop 

Database: App 
Dev

Full lifecycle 
management

Thousands to 
ten thousands

Virtual or 
Physical 

Infrastructure
Declarative

Kubernetes & 
K8s Add-ons

Automation: 
Devop 

Database: App 
Dev

Full lifecycle 
management

Thousands to 
ten thousands
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• Virtualization, EVM-PD 

• Declarative automation 

• Increased automation friendliness of PG 

Summary
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🙏Thank You
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Questions? 
@anynines 

@fischerjulian
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Thank You!
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Data Service 
Automation
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“Fully automating the entire lifecycle of a wide 
range of data services to run on cloud-native 

platforms across infrastructures at scale.”
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Commit to a Mission
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«K8s Cluster»

Operator

Service Instance (Operand)

A single K8s cluster  
with a single service instance 
managed by a single Operator.
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«K8s Cluster»

O
pe

ra
to

r

Service Instance (Operand)

Service Instance (Operand)

Service Instance (Operand)

Service Instance (Operand)

A single K8s cluster  
with multiple service-instances 
managed by a single Operator.
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«K8s Cluster»

  P
G

 O
pe
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to

r PG Service Instance (Operand) #1

PG Service Instance (Operand) #2

A single K8s cluster  
with multiple service-instances 
managed by a multiple Operators.

PG Service Instance (Operand) #3

PG Service Instance (Operand) #4
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r Other Service Instance (Operand) #5

Other Service Instance (Operand)

Other Service Instance (Operand)

Other Service Instance (Operand)
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Many K8s clusters each 
with multiple service-instances 
managed by a multiple Operators.



100s or 1000s of  
data service instances!
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Scale Matters!
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Each data service 
instance matters!
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Methodology
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Principles
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• Know your target audience. Requirements and desired qualities. 

• Choose your data services, wisely. Be aware of open source licenses. 

• Strive for full lifecycle automation. 

• On-demand provisioning of dedicated service instances. 

• Rebuild failed instances instead of fixing them. 

• Design for scalability.

Principles
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• Operational model first, automation second. 

• Be a backup/restore hero. 

• Solve issues on the framework level, fine-tune data service specifically. 

• Test code. Test service instances. Test desired and undesired behavior. 

• Provide meaningful default configuration values. Except custom config 
parameters.

Principles
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• Don’t touch upstream code, except for …  

• Master release management 

• Deliver releases into target environments quickly 

• Collect feedback from users (e.g. through support) 

• Provide meaningful documentation. Better documentation, less support.

Principles
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Data Service Automation 
with Kubernetes
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Ways to Implement an 
„Operator“
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• Kubernetes CRDs + Custom Controllers 

• Operator SDK 

• KUDO

Data Service Automation with K8s
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Stages of 
Development
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• Operational Model - Level 1: What a sysop/DBA would do. 

• Operational Model - Level 2: Containerization, YAML + kubectl 

• Operational Model - Level 3: Operator 

• Operational Model - Level 4: Operator Lifecycle Management

Data Service Automation with K8s
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CRDs
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apiVersion: apiextensions.k8s.io/v1 
kind: CustomResourceDefinition 
metadata: 
  # name must match the spec fields below, and be in the form: <plural>.<group> 
  name: pgs.ds.a9s.io 
spec: 
  # group name to use for REST API: /apis/<group>/<version> 
  group: ds.a9s.io 
  # list of versions supported by this CustomResourceDefinition 
  versions: 
    - name: v1 
      # Each version can be enabled/disabled by Served flag. 
      served: true 
      # One and only one version must be marked as the storage version. 
      storage: true 
      schema: 
        openAPIV3Schema: 
          type: object 
          description: Yeah! Science! 
          properties: 
            spec: 
              type: object 
              required: ["replicas"] 
              properties: 
                postgresVersion:                   
                  type: string 
                  # pattern: major.minor.patchlevel or major.minor > determine patchlevel automatically 
                  default: "12.2" 
                # postgresPlugins: 
                #   type: array 
                replicas: 
                  type: integer 
                  # pattern: 2n+1 
                  minimum: 1 
                  default: 1 
  # either Namespaced or Cluster. Namespaced as data service instances should belong to a namespace. 
  scope: Namespaced 
  names: 
    # plural name to be used in the URL: /apis/<group>/<version>/<plural> 
    plural: pgs 
    # singular name to be used as an alias on the CLI and for display 
    singular: pg 
    # kind is normally the CamelCased singular type. Your resource manifests use this. 
    kind: PostgreSQL 
    # shortNames allow shorter string to match your resource on the CLI 
    shortNames: 
      - pg 
      - pgs
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apiVersion: ds.a9s.io/v1 
kind: PostgreSQL 
metadata:  
  name: pg-1 
spec: 
  postgresVersion: "12.2"                   
  replicas: 3 



• CRD = Custom Resource Definition 

• Introduce custom data structures to Kubernetes 

• Kubernetes provides an endpoint for managing these objects 

• Kubernetes provides persistency by storing them in its etcd.

K8s CRDs
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Controllers
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// [...] 

// add adds a new Controller to mgr with r as the reconcile.Reconciler 
func add(mgr manager.Manager, r reconcile.Reconciler) error { 

  // Create a new controller 
  // [...] 

  // Watch for changes to primary resource Memcached 
  err = c.Watch(&source.Kind{Type: &cachev1alpha1.Memcached{}}, &handler.EnqueueRequestForObject{}) 
  if err != nil { 
    return err 
  } 

  // TODO(user): Modify this to be the types you create that are owned by the primary resource 
  // Watch for changes to secondary resource Pods and requeue the owner Memcached 
  err = c.Watch(&source.Kind{Type: &corev1.Pod{}}, &handler.EnqueueRequestForOwner{ 
    IsController: true, 
    OwnerType:    &cachev1alpha1.Memcached{}, 
  }) 
   
  // [...] 
} 
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func (r *ReconcileMemcached) Reconcile(request reconcile.Request) 
(reconcile.Result, error) { 
  reqLogger := log.WithValues("Request.Namespace", request.Namespace, 
"Request.Name", request.Name) 
  reqLogger.Info("Reconciling Memcached") 

  // Fetch the Memcached instance 
  instance := &cachev1alpha1.Memcached{} 

 err := r.client.Get(context.TODO(), request.NamespacedName, instance) // 
Retrieve the object 

  if err != nil { 
    if errors.IsNotFound(err) { 
      // Request object not found, could have been deleted after reconcile 
request. 
      // Owned objects are automatically garbage collected. For additional 
cleanup logic use finalizers. 
      // Return and don't requeue 
      return reconcile.Result{}, nil 
    } 
    // Error reading the object - requeue the request. 
    return reconcile.Result{}, err 
  } 

  // Define a new Pod object (similar to a YAML Spec) 
  pod := newPodForCR(instance) 

  if err := controllerutil.SetControllerReference(instance, pod, r.scheme); 
err != nil { 
    return reconcile.Result{}, err 
  } 
 

  // Check if this Pod already exists 
  found := &corev1.Pod{} // Empty Pod object 

  err = r.client.Get(context.TODO(), types.NamespacedName{Name: pod.Name, 
Namespace: pod.Namespace}, found) 

  // If an error occurs and in particular the error is of the type NotFound then 
we know the Pod doesn't exist. 
  if err != nil && errors.IsNotFound(err) { 
    reqLogger.Info("Creating a new Pod", "Pod.Namespace", pod.Namespace, 
"Pod.Name", pod.Name) 

    // Create the secondary objects ... in this case a single pod. 
    err = r.client.Create(context.TODO(), pod) 
    if err != nil { 
      return reconcile.Result{}, err 
    } 

    // Pod created successfully - don't requeue 
    return reconcile.Result{}, nil 
  } else if err != nil { 
    return reconcile.Result{}, err 
  } 

  // Pod already exists - don't requeue 
  reqLogger.Info("Skip reconcile: Pod already exists", "Pod.Namespace", 
found.Namespace, "Pod.Name", found.Name) 
  return reconcile.Result{}, nil 
} 



• Read custom resource object specifications 

• Translate primary resources into a set of secondary resources. 

• E.g. a PostgreSQL resource into a Service and a StatefulSet. 

• Watches the primary spec for changes. 

• Ensures secondary resources to comply to the desired state of the primary’s 
spec.

K8s Controllers
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Common Pitfalls
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• Underestimate complexity and effort 

• Insufficient coverage of essential lifecycle operations 

• Too little robustness, observability and predictability 

• Applying automation that doesn’t fit the context
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What 
Organizations Want
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• Expose lifecycle operations using Kubernetes Custom Resources (CRDs) 

• On-Demand Provisioning of Dedicated Service-Instances 

• Allow configuration updates 

• Provide monitoring of health and status 

• Infrastructure-agnostic 

• Runs on different Kubernetes flavors. 

• Authentication with dedicated user for each application accessing the DSI
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• Horizontal 2n+1 DSI scalability: 1, 3, 5 ….  

• Automatic failure detection and fail-over. Self-healing to recover degraded 
clustered service instances. 

• Host-anti-affinity. Support for multiple AZs. 

• Vertical DSI scalability: replace small pods with larger pods with even larger 
pods, … 

• Provide backup and restore capabilities with the ability to create backup 
schedules.
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• Stream backups to external object stores. 

• Allow choosing data service versions. 

• Documentation. 

• Encryption at rest and encryption at transit. 

• … 
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The Long Life of a 
Service Instance
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Data Service Automation
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Create Service Instance

Delete Service Instance

Add log sink

Add metrics sink

Add alerting rule

Vertical scale-up

Horizontal scale-out Create backup

Restore backup

Update Operator

Install Operator

Delete Operator

Update Operator Configuration

Patch-level upgrade

Minor upgrade

Major upgrade

Kubernetes Node Failure

Availability Zone Failure

Network Partitioning

Network Delay Fluctuation

Network Bandwidth Fluctuation

Enable (Postgresql) extension

Disable (Postgresql) extension

Create service-binding

Delete service-binding

Change configuration setting

Create a backup schedule



Service Bindings
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Service Bindings
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«K8s Cluster»

  PG Operator

PG Service Instance (Operand)

A Service Binding represents the 
connection between an app and a 
data service instance.

«Microservice» 
Microservice #1

«Microservice» 
Microservice #2

Service Binding #1 Service Binding #2



Service Bindings
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«K8s Cluster»

  PG Operator

PG Service Instance (Operand)

A Service Binding comprises a 
Kubernetes Secret as well as  
a user in the managed data service, 
e.g. a PostgreSQL user. 

Both user and secret are unique to a 
particular Service Binding.

«Microservice» 
Microservice #1

«Custom Resource» 
Service Binding #1

  PG User #1 for 
Service Binding #1

«Secret» 
Secret #1

  PG User #1 for 
Service Binding #1



Backups
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Backups

93

«K8s Cluster»

  PG Operator

PG Service Instance (Operand)

A single K8s cluster  
with multiple service-instances 
managed by a multiple Operators.

«Backup» 
Daily Backup for 2021-10-06

«Backup Plan» 
Plan to do a daily backup



Technology
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Writing 
Controllers
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Reconciling 
External Resources
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«K8s Cluster»

  PG Operator

PG Service Instance (Operand)

«Microservice» 
Microservice #1

«Custom Resource» 
Service Binding #1

  PG User #1 for 
Service Binding #1

«Secret» 
Secret #1

  PG User #1 for 
Service Binding #1

How to reconcile the postgres user?



98

«Custom Resource» 
Service Binding #1

«Secret» 
Secret #1

«Custom Resource»   
PG User #1 for Service 

Binding #1
«Controller» 

PG User Controller

pg-user CR created CREATE USER user123 …



CREATE USER
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«Custom Resource» 
Service Binding #1

«Secret» 
Secret #1

«Custom Resource»   
PG User #1 for Service 

Binding #1
«Controller» 

PG User Controller

pg-user CR created CREATE USER user123 …

{Careful ⚠ This is not a transaction. 
Atomicity is not guaranteed.

💥
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«Custom Resource» 
Service Binding #1

«Secret» 
Secret #1

«Controller» 
PG User Controller

Inconsistent state. 

Secret ✅ 
Postgres user ❌



Be prepared to  
re-reconcile by making 

actions idempotent.
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CREATE USER  
IF NOT EXISTS

103
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«Custom Resource» 
Service Binding #1

«Secret» 
Secret #1

«Custom Resource»   
PG User #1 for Service 

Binding #1
«Controller» 

PG User Controller



Summary
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Questions? 
@anynines 

@fischerjulian
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Thank You!

107


