anynines

10 Years of Automating PostgreSQL.
A Recap.

Nntroduction

anynines

10 Years

15 actually'

This Talk

Tnis Talk

Chronological summary

Different stages of automating PostgreSQL
How the technological zeitgeist impacted automation over time
Learnings (as an individual as well as an organization)

How to scale-out operations from dozens to thousands of machines

The Perspective

Aspects of Interest

e Infrastructure: physical, VM-hosts, virtual infrastructures.

e Automation technology: imperative, declarative.

e Lifecycle mgmt. coverage of automation: CRUD service instances, service
bindings, backups & restore, configuration, upgrades, high-availabilty, etc.

e Assets under management: Physical / virtual machines && Pods / containers.
e Operational responsibility: Platform operator &&|| Application developer

e PostgreSQL at the time: HA & cluster management, upgrades, security, ...

@ anynines

10

mperative
Automation

Stage 1: Phvysical servers
~2008-2009

Phvsical Machines

(Physical) Servers & Shell Scripts

e Best performance per €/%7?

e Servers are dimensioned with respect to peak loads and are

idle 90% of the time.

e Building clusters requires flexible data centers allowing the wiring of private

networking.

e Oftenservers have contract lifetimes of several years (off-the-shelf

not flexible enough) .

e Dependency to the data center staff for some tasks—

14

Delays

D(Cs often

@ anynines

15

(Physical) Servers & Shell Scripts

e Shell scripts
e Coverage: Supporting repetitive tasks
e Mostly manually managed OS

e OS provided software packages

16

(Physical) Servers & Shell Scripts

e Striving for a maximum uptime as fixing failed servers requires manual
intervention and takes hours to fully recover.

e Failures have strong impact on the Sysop's sleep.
e Long [IR

e Manually executed tasks come with a human error rate

17

(Physical) Servers & Shell Scripts

e PostereSQL

e | ooking for ways to make PostgreSQL highly available

e Blocklevel || filesystem level replication, e.g. GlusterFS

e Sync and async replication
e Pacemaker

18

Stage 2: Virtual servers
~2009-2011

Virtual Machines

(Physical) Servers & Shell Scripts

e Automanually managed Xen & XVM hosts
e |ncreased hardware utilization
e Lower barrier of entry: virtual clusters

e VMs = More machines to manage = More automation needed

21

Chef

(Physical) Servers & Shell Scripts

e Configuration management
e Centralized cookbooks
e Better reusability of code
e Lesscode duplicity

e More efficient that shell scripts

23

(Physical) Servers & Shell Scripts

e PostgreSQL

e Async replication has proven to be the best all-round approach.

e Pacemaker and, later, repmgr

e Shared HA-PostgreSQL cluster to lower the ba

shared virtual or physical

rier of

DB server) vs. dedica

24

‘ed virt

-l
ud

try (VM app servers +

DB-servers.

@ anynines

(Physical) Servers & Shell Scripts

e Limitations

® Statedrift! Manual intervention necessary although (theoretically) covered by
automation.

e [ncreasinger
necome limiting factors.

e | heteam’s utilization increased.

o |

~alin|

K

N0OW

Ng new team mem

edge was necessa

ols

Y%

"SWas harc

25

as, U

espite of the coo

orts for maintenance, refactoring and network management

«<books, still a lot of

to operate the a

oplication system

S.

@ anynines

The Game
Changer

On-demand provisioning of
dedicated PostgreSQL instances
pased on declarative automation.

Declarative
Automation

SnIft In operational responsibility:
App devs operate their own
databases.

&% OPEN SERVICE BROKER API Kubernetes CRDs

@ anynines

30

Stage 3: Virtual infrastructures
~2012-2023

Virtual Infrastructures
The programmable data center

Dealing with State

VWhere to store state?

P
Store state on a remotely

attached block device =
persistent disk.

Infrasstructure API
_ VIRTUAL DATACENTER

VIRTUAL MACHINE

Operating
System

|3

Storage Node Storage Node Storage Node

Storage Volume

Infrastructure as a Service (laaS), e.g. OpenStack

/@

The data lifecycle has been
decoupled from the VM litecycle
= [he VM becomes disposable.

/@
Fphemeral VM,
persistent disk.

CLOUDFOUNDRY

™

@ anynines

Predictable & repeatable
deployments. No state-drift.

Virtual Infrastructures

e PostereSQL
e Sync and Async Streaming replication
e Repmgr and Patroni

e Logic backups and PITR backups

41

Stage 4: Container infrastructures
~2015-2023

Kubernetes

Kubernetes

e Declarative automation

e ~ [nfrastructure abstraction API

e AP| standardization & Open framework for automation
e Container isolation & Noisy neighbor issues

o Often: VM automation underneath.

44

Container Infrastructures

e PostgreSQL
e Sync and Async Streaming replication

e Patroni as acluster manager

45

The Future

summary &
Conclusion

Physical
machines

(Semi-)
Manually

Managed
VM Hosts

Virtual
Infrastructure

Virtual or
Physical
Infrastructure

Infrastructure Automation

Paradigm

Imperative

Imperative

Declarative

Declarative

Automation Operated b Coverage Machines /
Technology P Y 8 Devop
Simple
Shell scripts Sysop repetitive A few dozen
tasks
Parts of the
Chef Devop Iifecycle. A few hundred
Devops
centric.
Automation:
BOSH Devop Full lifecycle Thousands to
Database: App management tenthousands
Dev
Automation:
Kubernetes & Devop Full lifecycle Thousands to
K8s Add-ons Database: App management tenthousands
Dev

48

49

summary

e \Virtualization, EVM-PD

e Declarative automation

e |ncreased automation friendliness of PG

50

Questions?
@anynines
@fischerjulian

Thank You!

Data Service
Automation

"Fully automating the entire lifecycle of a wide
range of data services to run on cloud-native
platforms across infrastructures at scale’

55

«K8s Cluster»

A single K8s cluster
with a single service instance
envice instence (Operend managed by a single Operator.

Operator

56

«K8s Cluster»

Service Instance (Operand)

A single K8s cluster
with multiple service-instances
Service Instance (Operanc) managed by a single Operator.

Service Instance (Operand)

O
-
©
)
O
O

Service Instance (Operand)

57

PG Operator

-
O
e
©
-
)
o
O
-
)
L
e
O

«K8s Cluster»

PG Service Instance (Operand) #1
PG Service Instance (Operand) #2
PG Service Instance (Operand) #3
PG Service Instance (Operand) #4
Other Service Instance (Operand) #5
Other Service Instance (Operand)
Other Service Instance (Operand)

Other Service Instance (Operand)

A single K8s cluster
with multiple service-instances
managed by a multiple Operators.

58

PG Operator

Other Operator

PG Operator

Other Operator

PG Operator

Other Operator

PG Operator

-
®
]
Q
o
2
(5}

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

PG Operator

Other Operator

PG Operator

Other Operator

PG Operator

Other Operator

PG Operator

Other Operator

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

PG Operator

Other Operator

PG Operator

Other Operator

PG Operator

Other Operator

PG Operator

Other Operator

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

PG Operator

Other Operator

PG Operator

Other Operator

PG Operator

Other Operator

PG Operator

Other Operator

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

PG Operator

Other Operator

PG Operator

Other Operator

PG Operator

Other Operator

PG Operator

Other Operator

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

«K8s Cluster»

PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)
PG Service Instance (Operand)

PG Service Instance (Operand)

Many K8s clusters each
with multiple service-instances
managed by a multiple Operators.

59

100s or 1000s of
data service instances!

Scale Matters!

o1

-acn data service
instance matters!

Methodology

Principles

Principles

e Know your target audience. Requirements and desired qualities.

e Choose your data services, wisely. Be aware of open source licenses.
e Strive for full lifecycle automation.

e On-demand provisioning of dedicated service instances.

e Rebuild failed instances instead of fixing them.

e Design for scalability.

65

Principles

e Operational model first, automation second.

e Be aback

e Solve issues on the framework level,

up/restore hero.

f‘

ne-tune data service specifically.

e lest code. Test service instances. Test desired and undesired behavior.

e Providemr

eaningful default configuration values.

Daramete

°S.

66

-xcept custom config

Principles

e Don't touch upstream code, except for ...

e Master release management

e Deliver releases into target environments quickly
e Collect feedback from users (e.g. through support)

e Provide meaningful documentation. Better documentation, less support.

67

Data Service Automation
with Kubernetes

Ways to Implement an
Operator”

Data Service Automation with K8s

e Kubernetes CRDs + Custom Controllers

e Operator SDK

o KUDO

Stages of
Development

Data Service Automation with K8s

e Operational Model - Level 1: What a sysop/DBA would do.
e Operational Model - Level 2: Containerization, YAML + kubectl
e Operational Model - Level 3: Operator

e Operational Model - Level 4: Operator Lifecycle Management

(2

CRDs

: apiextensions.k8s.io/v1l

: CustomResourceDefinition

pgs.ds.a9s.io

: ds.a9s.10

: object
: Yeah! Science!

: object
["replicas"]

string

"12.2"

integer

: Namespaced

Pg

PostgreSQL

: ds.a9s.10/Vv1
: PostgreSQL

: pg-1

y 12,27

75

K3s CRDs

e CRD = Custom Resource Definition
e |ntroduce custom data structures to Kubernetes
e Kubernetes provides an endpoint for managing these objects

e Kubernetes provides persistency by storing them in its etcd.

/0

Controllers

add(mgr manager.Manager, r reconcile.Reconciler) error {

err = c.Watch(&source.Kind{Type: &cachevlalphal.Memcached<{}}, &handler.EnqueueRequestForObject{})
if err !'= {
return err

}

err = c.Watch(&source.Kind{Type: &corevl.Pod{}}, &handler.EnqueueRequestForOwner{
IsController:

OwnerType: &cachevlalphal.Memcached{},
})

/83

func (r xReconcileMemcached) Reconcile(request reconcile.Request)
(reconcile.Result, error) {

regLogger := log.WithValues("Request.Namespace", request.Namespace, found := &corevl.Pod{}
"Request.Name", request.Name)

reqLogger.Info("Reconciling Memcached") err Get

instance := &cachevlalphal.Memcached{}

err := r.client.Get(context.TODO(), request.NamespacedName, instance) if err '= nil && errors.IsNotFound(err) A

regLogger.Info("Creating a new Pod", "Pod.Namespace'", pod.Namespace,
"Pod.Name", pod.Name)
if err !'= nil {

if errors.IsNotFound(err) {

err = r.client.Create(context.TODO(), pod)
if err !'= nil {

return reconcile.Result{}, err
}

return reconcile.Result{}, nil

}

return reconcile.Result{}, nil

} else if err !'= nil {
return reconcile.Result{}, err return reconcile.Result{}, err
¥

}

pod := newPodForCR(instance) regLogger.Info("Skip reconcile: Pod already exists", "Pod.Namespace",
found.Namespace, "Pod.Name", found.Name)
return reconcile.Result{}, nil

¥

if err := controllerutil.SetControllerReference(instance, pod, r.scheme);
err '= nil {

return reconcile.Result{}, err

}

K3s Controllers

e Read custom resource object specifications

e Translate primary resources into a set of secondary resources.

e £.g.aPostgreSQL resource into a Service and a StatefulSet.

e \Vatches the primary spec for changes.

e Ensures secondary resources to comply to the desired state of the primary’s
spec.

@ anynines

80

Common Pitfalls

e Underestimate complexity and effort
e |nsufficient coverage of essential lifecycle operations
e [00 little robustness, observability and predictability

e Applying automation that doesn't fit the context

82

VWhat
Organizations Want

e Expose lifecycle operations using Kubernetes Custom Resources (CRDs)
® On-Demand Provisioning of Dedicated Service-Instances

e Allow configuration updates

e Provide monitoring of health and status

e [nfrastructure-agnostic

e Runsondifferent Kubernetes flavors.

e Authentication with dedicated user for each application accessing the DS

34

e Horizontal 2n+71 DSl scalability: 1, 3,5 ...

e Automatic failure detection and fail-over. Self-healing to recover degraded
clustered service instances.

e Host-anti-affinity. Support for multiple AZs.

e Vertical DS| scalability: replace small pods with larger pods with even larger
nOds, ...

e Provide backup and restore capabilities with the ability to create backup
schedules.

85

e Stream backups to external object stores.

e Allow choosing data service versions.

e Documentation.

e Encryption at rest and encryption at transit.

86

The Long Life of a
Service Instance

Data Service Automation

Install Operator

Update Operator

Update Operator Configuration

Delete Operator

Create Service Instance

Delete Service Instance

Add log sink
Add metrics sink
Add alerting rule

Vertical scale-up

Horizontal scale-out
Patch-level upgrade

Minor upgrade

Major upgrade

Change configuration setting
Create service-binding
Delete service-binding

Create a backup schedule
Create backup

Restore backup

Enable (Postgresgl) extension

Disable (Postgresgl) extension

883

A

Network Delay Fluctuation
Network Bandwidth Fluctuation

Network Partitioning
Availability Zone Failure

Kubernetes Node Failure

Service Bindings

Service Bindings

«K8s Cluster»

— — A Service Binding represents the
Microservice #1 Microservice #2 COﬂﬂeCthﬂ between an app and a
data service instance.

Service Binding #1 | Service Binding #2

PG Service Instance (Operand)

PG Operator

90

Service Bindings

«K8s Cluster»

N A Service Binding comprises a
Microservice f Kubernetes Secret as well as

a user in the managed data service,
e.g.a PostgreSQL user.

«Custom Resource»
Service Binding #1

«>ecret» PG User #1 for
Secret #1 Service Binding #1

PG Service Instance (Operand) l

Both user and secret are unique to a
PG User #1 for . o . .
Senvice Binding # particular Service Binding.

PG Operator

91

Backups

Backups

«K8s Cluster»

Daily Bacgfsiégg»om—m—% ASlng‘e K85 C‘Ugter .
with multiple service-instances
Backup Plan managed by a multiple Operators.

Plan to do a daily backup

PG Service Instance (Operand)

PG Operator

93

Technology

Writing
Controllers

Reconclling
-xternal Resources

«K8s Cluster»

«Mlicroservice»
Microservice #1

«Custom Resource»
Service Binding #1

«>ecret» PG User #1 for
Secret #1 Service Binding #1

PG Service Instance (Operand) l

PG User #1 for
Service Binding #1

PG Operator

How to reconcile the postgres user?

97

© anynines

«Custom Resource»
Service Binding #1 pg-user CR created CREATE USER user123....

«Controllers

«Secret»

Secret #1 PG User Controller

98

CREATE USER

Careful & This is not a transaction.
Atomicity is not guaranteed.

«Custom Resource»
Service Binding #1

«Secret» «Controller»
Secret #1 PG User Controller

100

Inconsistent state.

Secret
Postares user X

«Custom Resource»
Service Binding #1

«Secret» «Controller»
Secret #1 PG User Controller

101

Be prepared to
re-reconcile by making
actions idempotent.

CREATE USER
FNOT EXISTS

«Custom Resource»
Service Binding #1

«Secret» «Controller»
Secret #1 PG User Controller

104

summary

Questions?
@anynines
@fischerjulian

Thank You!

