
10 Years of Automating PostgreSQL. 
A Recap.

1



Introduction

2



3



10 Years

4



15 actually!

5

🥳🎂🎉



This Talk

6

🎙



• Chronological summary 

• Different stages of automating PostgreSQL 

• How the technological zeitgeist impacted automation over time 

• Learnings (as an individual as well as an organization) 

• How to scale-out operations from dozens to thousands of machines

This Talk

7



🔭The Perspective

8



• Infrastructure: physical, VM-hosts, virtual infrastructures. 

• Automation technology: imperative, declarative. 

• Lifecycle mgmt. coverage of automation: CRUD service instances, service 
bindings, backups & restore, configuration, upgrades, high-availabilty, etc. 

• Assets under management: Physical / virtual machines && Pods / containers. 

• Operational responsibility: Platform operator &&|| Application developer 

• PostgreSQL at the time: HA & cluster management, upgrades, security, … 

Aspects of Interest

9



10



Imperative 
Automation

11



Stage 1: Physical servers 
~2008-2009

12



🤖
13

Physical Machines



• Best performance per €/$? 

• Servers are dimensioned with respect to peak loads and are  
idle 90% of the time.  

• Building clusters requires flexible data centers allowing the wiring of private 
networking. 

• Often servers have contract lifetimes of several years (off-the-shelf DCs often 
not flexible enough)  . 

• Dependency to the data center staff for some tasks→Delays

(Physical) Servers & Shell Scripts

14



15

Shell Scripts



• Shell scripts 

• Coverage: Supporting repetitive tasks 

• Mostly manually managed OS 

• OS provided software packages

(Physical) Servers & Shell Scripts

16



• Striving for a maximum uptime as fixing failed servers requires manual 
intervention and takes hours to fully recover. 

• Failures have strong impact on the Sysop’s sleep. 

• Long TTR 

• Manually executed tasks come with a human error rate

(Physical) Servers & Shell Scripts

17



• PostgreSQL 

• Looking for ways to make PostgreSQL highly available 

• Blocklevel || filesystem level replication, e.g. GlusterFS 

• Sync and async replication 

• Pacemaker 

• …

(Physical) Servers & Shell Scripts

18



Stage 2: Virtual servers 
~2009-2011

19



🤖
20

Virtual Machines



• Automanually managed Xen & XVM hosts 

• Increased hardware utilization 

• Lower barrier of entry: virtual clusters 

• VMs → More machines to manage → More automation needed

(Physical) Servers & Shell Scripts

21



🧑🍳
22

Chef



• Configuration management 

• Centralized cookbooks 

• Better reusability of code 

• Less code duplicity 

• More efficient that shell scripts

(Physical) Servers & Shell Scripts

23



• PostgreSQL 

• Async replication has proven to be the best all-round approach. 

• Pacemaker and, later, repmgr 

• Shared HA-PostgreSQL cluster to lower the barrier of entry (VM app servers + 
shared virtual or physical DB server) vs. dedicated virtual DB-servers.

(Physical) Servers & Shell Scripts

24



• Limitations 

• State drift! Manual intervention necessary although (theoretically) covered by 
automation. 

• Increasing efforts for maintenance, refactoring and network management 
become limiting factors. 

• The team’s utilization increased. 

• Training new team members was hard as, despite of the cookbooks, still a lot of 
knowledge was necessary to operate the application systems. 

(Physical) Servers & Shell Scripts

25



The Game 
Changer

26



On-demand provisioning of 
dedicated PostgreSQL instances 
based on declarative automation.

27



Declarative 
Automation

28



29

Kubernetes



Shift in operational responsibility: 
App devs operate their own 

databases.

30

Kubernetes CRDs



Stage 3: Virtual infrastructures 
~2012-2023

31



Virtual Infrastructures 
The programmable data center

32



Dealing with State



Where to store state?



Store state on a remotely 
attached block device = 

persistent disk.

🔑



Infrastructure as a Service (IaaS), e.g. OpenStack

VIRTUAL DATACENTER

Router

STORAGE

Storage Node Storage Node Storage Node

HDD HDD

HDD HDD

HDD HDD

HDD HDD

HDD HDD

HDD HDD

HDD HDD

HDD HDD

HDD HDD

Storage Volume

Operating 
System

VIRTUAL MACHINE

Infrasstructure API



The data lifecycle has been 
decoupled from the VM lifecycle 
⇒ The VM becomes disposable.

🔑



Ephemeral VM, 
persistent disk.

🔑



39



Predictable & repeatable 
deployments. No state-drift.

40



• PostgreSQL 

• Sync and Async Streaming replication 

• Repmgr and Patroni 

• Logic backups and PITR backups

Virtual Infrastructures

41



Stage 4: Container infrastructures 
~2015-2023

42



Kubernetes

43



• Declarative automation 

• ~ Infrastructure abstraction API 

• API standardization & Open framework for automation 

• Container isolation & Noisy neighbor issues 

• Often: VM automation underneath.

Kubernetes

44



• PostgreSQL 

• Sync and Async Streaming replication 

• Patroni as a cluster manager

Container Infrastructures

45



📈
The Future

46



Summary & 
Conclusion

47



48

Infrastructure
Automation 

Paradigm
Automation 
Technology

Operated by Coverage
Machines / 

Devop

Physical 
machines

Imperative Shell scripts Sysop
Simple 

repetitive 
tasks

A few dozen

(Semi-) 
Manually 
Managed  
VM Hosts

Imperative Chef Devop

Parts of the 
lifecycle. 
Devops 
centric.

A few hundred

Virtual 
Infrastructure

Declarative BOSH

Automation: 
Devop 

Database: App 
Dev

Full lifecycle 
management

Thousands to 
ten thousands

Virtual or 
Physical 

Infrastructure
Declarative

Kubernetes & 
K8s Add-ons

Automation: 
Devop 

Database: App 
Dev

Full lifecycle 
management

Thousands to 
ten thousands



49



• Virtualization, EVM-PD 

• Declarative automation 

• Increased automation friendliness of PG 

Summary

50



🙏Thank You

51



Questions? 
@anynines 

@fischerjulian

52



Thank You!

53



Data Service 
Automation

54



“Fully automating the entire lifecycle of a wide 
range of data services to run on cloud-native 

platforms across infrastructures at scale.”

55

Commit to a Mission



56

«K8s Cluster»

Operator

Service Instance (Operand)

A single K8s cluster  
with a single service instance 
managed by a single Operator.



57

«K8s Cluster»

O
pe

ra
to

r

Service Instance (Operand)

Service Instance (Operand)

Service Instance (Operand)

Service Instance (Operand)

A single K8s cluster  
with multiple service-instances 
managed by a single Operator.



58

«K8s Cluster»

  P
G

 O
pe

ra
to

r PG Service Instance (Operand) #1

PG Service Instance (Operand) #2

A single K8s cluster  
with multiple service-instances 
managed by a multiple Operators.

PG Service Instance (Operand) #3

PG Service Instance (Operand) #4

  O
th

er
 O

pe
ra

to
r Other Service Instance (Operand) #5

Other Service Instance (Operand)

Other Service Instance (Operand)

Other Service Instance (Operand)



59

Many K8s clusters each 
with multiple service-instances 
managed by a multiple Operators.



100s or 1000s of  
data service instances!

60



Scale Matters!

61



Each data service 
instance matters!

62



Methodology

63



Principles

64



• Know your target audience. Requirements and desired qualities. 

• Choose your data services, wisely. Be aware of open source licenses. 

• Strive for full lifecycle automation. 

• On-demand provisioning of dedicated service instances. 

• Rebuild failed instances instead of fixing them. 

• Design for scalability.

Principles

65



• Operational model first, automation second. 

• Be a backup/restore hero. 

• Solve issues on the framework level, fine-tune data service specifically. 

• Test code. Test service instances. Test desired and undesired behavior. 

• Provide meaningful default configuration values. Except custom config 
parameters.

Principles

66



• Don’t touch upstream code, except for …  

• Master release management 

• Deliver releases into target environments quickly 

• Collect feedback from users (e.g. through support) 

• Provide meaningful documentation. Better documentation, less support.

Principles

67



Data Service Automation 
with Kubernetes

68



Ways to Implement an 
„Operator“

69



• Kubernetes CRDs + Custom Controllers 

• Operator SDK 

• KUDO

Data Service Automation with K8s

70



Stages of 
Development

71



• Operational Model - Level 1: What a sysop/DBA would do. 

• Operational Model - Level 2: Containerization, YAML + kubectl 

• Operational Model - Level 3: Operator 

• Operational Model - Level 4: Operator Lifecycle Management

Data Service Automation with K8s

72



CRDs

73



74

apiVersion: apiextensions.k8s.io/v1 
kind: CustomResourceDefinition 
metadata: 
  # name must match the spec fields below, and be in the form: <plural>.<group> 
  name: pgs.ds.a9s.io 
spec: 
  # group name to use for REST API: /apis/<group>/<version> 
  group: ds.a9s.io 
  # list of versions supported by this CustomResourceDefinition 
  versions: 
    - name: v1 
      # Each version can be enabled/disabled by Served flag. 
      served: true 
      # One and only one version must be marked as the storage version. 
      storage: true 
      schema: 
        openAPIV3Schema: 
          type: object 
          description: Yeah! Science! 
          properties: 
            spec: 
              type: object 
              required: ["replicas"] 
              properties: 
                postgresVersion:                   
                  type: string 
                  # pattern: major.minor.patchlevel or major.minor > determine patchlevel automatically 
                  default: "12.2" 
                # postgresPlugins: 
                #   type: array 
                replicas: 
                  type: integer 
                  # pattern: 2n+1 
                  minimum: 1 
                  default: 1 
  # either Namespaced or Cluster. Namespaced as data service instances should belong to a namespace. 
  scope: Namespaced 
  names: 
    # plural name to be used in the URL: /apis/<group>/<version>/<plural> 
    plural: pgs 
    # singular name to be used as an alias on the CLI and for display 
    singular: pg 
    # kind is normally the CamelCased singular type. Your resource manifests use this. 
    kind: PostgreSQL 
    # shortNames allow shorter string to match your resource on the CLI 
    shortNames: 
      - pg 
      - pgs



75

apiVersion: ds.a9s.io/v1 
kind: PostgreSQL 
metadata:  
  name: pg-1 
spec: 
  postgresVersion: "12.2"                   
  replicas: 3 



• CRD = Custom Resource Definition 

• Introduce custom data structures to Kubernetes 

• Kubernetes provides an endpoint for managing these objects 

• Kubernetes provides persistency by storing them in its etcd.

K8s CRDs

76



Controllers

77



78

// [...] 

// add adds a new Controller to mgr with r as the reconcile.Reconciler 
func add(mgr manager.Manager, r reconcile.Reconciler) error { 

  // Create a new controller 
  // [...] 

  // Watch for changes to primary resource Memcached 
  err = c.Watch(&source.Kind{Type: &cachev1alpha1.Memcached{}}, &handler.EnqueueRequestForObject{}) 
  if err != nil { 
    return err 
  } 

  // TODO(user): Modify this to be the types you create that are owned by the primary resource 
  // Watch for changes to secondary resource Pods and requeue the owner Memcached 
  err = c.Watch(&source.Kind{Type: &corev1.Pod{}}, &handler.EnqueueRequestForOwner{ 
    IsController: true, 
    OwnerType:    &cachev1alpha1.Memcached{}, 
  }) 
   
  // [...] 
} 



79

func (r *ReconcileMemcached) Reconcile(request reconcile.Request) 
(reconcile.Result, error) { 
  reqLogger := log.WithValues("Request.Namespace", request.Namespace, 
"Request.Name", request.Name) 
  reqLogger.Info("Reconciling Memcached") 

  // Fetch the Memcached instance 
  instance := &cachev1alpha1.Memcached{} 

 err := r.client.Get(context.TODO(), request.NamespacedName, instance) // 
Retrieve the object 

  if err != nil { 
    if errors.IsNotFound(err) { 
      // Request object not found, could have been deleted after reconcile 
request. 
      // Owned objects are automatically garbage collected. For additional 
cleanup logic use finalizers. 
      // Return and don't requeue 
      return reconcile.Result{}, nil 
    } 
    // Error reading the object - requeue the request. 
    return reconcile.Result{}, err 
  } 

  // Define a new Pod object (similar to a YAML Spec) 
  pod := newPodForCR(instance) 

  if err := controllerutil.SetControllerReference(instance, pod, r.scheme); 
err != nil { 
    return reconcile.Result{}, err 
  } 
 

  // Check if this Pod already exists 
  found := &corev1.Pod{} // Empty Pod object 

  err = r.client.Get(context.TODO(), types.NamespacedName{Name: pod.Name, 
Namespace: pod.Namespace}, found) 

  // If an error occurs and in particular the error is of the type NotFound then 
we know the Pod doesn't exist. 
  if err != nil && errors.IsNotFound(err) { 
    reqLogger.Info("Creating a new Pod", "Pod.Namespace", pod.Namespace, 
"Pod.Name", pod.Name) 

    // Create the secondary objects ... in this case a single pod. 
    err = r.client.Create(context.TODO(), pod) 
    if err != nil { 
      return reconcile.Result{}, err 
    } 

    // Pod created successfully - don't requeue 
    return reconcile.Result{}, nil 
  } else if err != nil { 
    return reconcile.Result{}, err 
  } 

  // Pod already exists - don't requeue 
  reqLogger.Info("Skip reconcile: Pod already exists", "Pod.Namespace", 
found.Namespace, "Pod.Name", found.Name) 
  return reconcile.Result{}, nil 
} 



• Read custom resource object specifications 

• Translate primary resources into a set of secondary resources. 

• E.g. a PostgreSQL resource into a Service and a StatefulSet. 

• Watches the primary spec for changes. 

• Ensures secondary resources to comply to the desired state of the primary’s 
spec.

K8s Controllers

80



Common Pitfalls

81



• Underestimate complexity and effort 

• Insufficient coverage of essential lifecycle operations 

• Too little robustness, observability and predictability 

• Applying automation that doesn’t fit the context

82



What 
Organizations Want

83



• Expose lifecycle operations using Kubernetes Custom Resources (CRDs) 

• On-Demand Provisioning of Dedicated Service-Instances 

• Allow configuration updates 

• Provide monitoring of health and status 

• Infrastructure-agnostic 

• Runs on different Kubernetes flavors. 

• Authentication with dedicated user for each application accessing the DSI

84



• Horizontal 2n+1 DSI scalability: 1, 3, 5 ….  

• Automatic failure detection and fail-over. Self-healing to recover degraded 
clustered service instances. 

• Host-anti-affinity. Support for multiple AZs. 

• Vertical DSI scalability: replace small pods with larger pods with even larger 
pods, … 

• Provide backup and restore capabilities with the ability to create backup 
schedules.

85



• Stream backups to external object stores. 

• Allow choosing data service versions. 

• Documentation. 

• Encryption at rest and encryption at transit. 

• … 

86



The Long Life of a 
Service Instance

87



Data Service Automation

88

Create Service Instance

Delete Service Instance

Add log sink

Add metrics sink

Add alerting rule

Vertical scale-up

Horizontal scale-out Create backup

Restore backup

Update Operator

Install Operator

Delete Operator

Update Operator Configuration

Patch-level upgrade

Minor upgrade

Major upgrade

Kubernetes Node Failure

Availability Zone Failure

Network Partitioning

Network Delay Fluctuation

Network Bandwidth Fluctuation

Enable (Postgresql) extension

Disable (Postgresql) extension

Create service-binding

Delete service-binding

Change configuration setting

Create a backup schedule



Service Bindings

89



Service Bindings

90

«K8s Cluster»

  PG Operator

PG Service Instance (Operand)

A Service Binding represents the 
connection between an app and a 
data service instance.

«Microservice» 
Microservice #1

«Microservice» 
Microservice #2

Service Binding #1 Service Binding #2



Service Bindings

91

«K8s Cluster»

  PG Operator

PG Service Instance (Operand)

A Service Binding comprises a 
Kubernetes Secret as well as  
a user in the managed data service, 
e.g. a PostgreSQL user. 

Both user and secret are unique to a 
particular Service Binding.

«Microservice» 
Microservice #1

«Custom Resource» 
Service Binding #1

  PG User #1 for 
Service Binding #1

«Secret» 
Secret #1

  PG User #1 for 
Service Binding #1



Backups

92



Backups

93

«K8s Cluster»

  PG Operator

PG Service Instance (Operand)

A single K8s cluster  
with multiple service-instances 
managed by a multiple Operators.

«Backup» 
Daily Backup for 2021-10-06

«Backup Plan» 
Plan to do a daily backup



Technology

94



Writing 
Controllers

95



Reconciling 
External Resources

96



97

«K8s Cluster»

  PG Operator

PG Service Instance (Operand)

«Microservice» 
Microservice #1

«Custom Resource» 
Service Binding #1

  PG User #1 for 
Service Binding #1

«Secret» 
Secret #1

  PG User #1 for 
Service Binding #1

How to reconcile the postgres user?



98

«Custom Resource» 
Service Binding #1

«Secret» 
Secret #1

«Custom Resource»   
PG User #1 for Service 

Binding #1
«Controller» 

PG User Controller

pg-user CR created CREATE USER user123 …



CREATE USER

99



100

«Custom Resource» 
Service Binding #1

«Secret» 
Secret #1

«Custom Resource»   
PG User #1 for Service 

Binding #1
«Controller» 

PG User Controller

pg-user CR created CREATE USER user123 …

{Careful ⚠ This is not a transaction. 
Atomicity is not guaranteed.

💥



101

«Custom Resource» 
Service Binding #1

«Secret» 
Secret #1

«Controller» 
PG User Controller

Inconsistent state. 

Secret ✅ 
Postgres user ❌



Be prepared to  
re-reconcile by making 

actions idempotent.

102



CREATE USER  
IF NOT EXISTS

103



104

«Custom Resource» 
Service Binding #1

«Secret» 
Secret #1

«Custom Resource»   
PG User #1 for Service 

Binding #1
«Controller» 

PG User Controller



Summary

105



Questions? 
@anynines 

@fischerjulian

106



Thank You!

107


