Postgres in Dockers on ZFS



Background and brief history

Kobus Wolvaardt and | work at GoodX Software

GoodX is a medical practice management ERP, CRM and EMR

1985 DOS pascal app, 2001 Delphi app on Windows

2006 Started moving from file data to PostgreSQL

Local app and postgres deployments on 500 to 1000 sites (much pain)
Cloud meant a windows machine in a DC over RDP running Delphi app
2013-2017 Business logic moved into database

2018 Python based web application launched (cloud solution)

Growth of centrally hosted Postgresql dbs accelerated



How it grew from there

Move postgres to Linux (postgres 8.4 performed badly on Windows)
Put a couple of DBs in one cluster

Run into performance issues -> buy more CPU and bigger/faster SSDs
Put more DBs in one cluster

Run into performance issues -> this time build some indexes :-) and buy
more hardware

Put some more DBs in the cluster

e Rinse repeat



Other design decisions

Business logic inside the DB

Printing was moved into DB functions with wkhtmltopdf

HTML is bad at printing thus latex was installed

HTTP requests made from plpython3u with requests library (and other
things)



Problems

e Back when we ran into DB size issues >1TB SSDs cost $2000+

e Database count went up to 200 per cluster
o  Setting shared memory to 128GB (of 512GB)
o  Connection count set to 8000 and even 10000
o One DB doing a long running query could push the whole machine over the edge
o  Soooo much money for SSDs

e Clusters started going over a TB each

o Basebackups take forever
o Backups take forever



More problems

Python http requests would lock, killing them would result in cluster restart
Wkhtmltopdf and latex packages and versions broke stuff

Developer package choices dictated DB server OS and environment
Security updates would restart postgres service (with all clusters) and
break printing



/ZFS - the what, why and the how

Copy on write FS

Each change to a block (even a single byte) results in the whole block being rewritten
Consistent block state guaranteed

Encryption, Compression and RAID built into FS (not block layer)

ZFS has a ZIL where it can burst to fast drives (change log, kind of like WAL files)
ZFS snapshots can be pushed and applied (almost like Postgres replication)
Snapshots are cheap to make and mount

Relatively easy raid (zraid1 and zraid2) that performs well

ZFS has ARC cache to which fast SSD drives can be assigned

Enterprise ready and widely deployed

What could possibly go wrong?



Our first ZFS machine

e We needed replicas so we built 144TB 12x12TB spin disk (raidz2)
machines for each DC

e Each live machine was replicated to a cluster on this machine

e Testing this machine showed decent performance

e The two replica servers pushed ZFS snapshots hourly, between them.

o Networks in SA were very expensive until recently and replicating in real time was not
feasible



/FS - the good

Hourly and daily snapshots going back months

Seconds to restore (clone)

No more copying and backing up and downtime for backups to complete
We could build large clusters with cheap spin disks

Zraid2 performs well and is really simple to manage

Decent performance

Backups and restore is very easy

Compression built in

Did | mention backups is a non issue?



ZFS - the bad (and the ugly)

e SSDs and ZFS don't play well
o  SSDs are liars (they lie about true block size)
The “copy on write” results in massive write amplification
We were expecting our 12 SSD machine to be faster than our 12 hdd machine
We put our most difficult and demanding client on it. Expecting a great day, the cluster just died!
Spin disks out performed SSDs with default setup (after some tweaking SSD were about equal to
spin disks)
e ZFS has thrown a hissy fit at least three times, saying more than half of disks are
broken and after a reset it seems only one was broken

e Resilvering a failed disk is stupidly slow. (Rebuilding a broken disk)
o 20to45days
o Add SSDs for ZIL and caching... then it is just slow: 2 to 10 days

(@)
(@)
(@)
(@)



ZFS settings

Setup the block size (recordsize) to match postgres (8kb or 16kb)

ZFS (and most copy on write filesystems) guarantee atomic writes

o Can set full_page_writes = off
o  Can turn wal_init_zero off as the zeros will not actually be overwritten in a CoW fs

Disable atime

Enable compression (zstd)

Consider tweaking the primarycache (we use ‘all’)

Set logbias="latency’ (‘throughput’ results in fragmentation)



Docker - the why and how

e Devops drove our use of dockers
o Instead of create DB -> restore DB -> apply migrations -> Run automated tests / dev cycle
o Inherit postgres layer -> install needed packages -> build layer with base DB and data
m  Spin up docker (with no time to apply base DB and data) -> apply migrations -> Run tests
m Great for automated tests
m Near instant spin up
m Concurrent DBs can be spun up, each in a docker subnet (very easy config)

e While discussing our sysadmin troubles docker was suggested

e We also had to update from 9.5 to 12 (some time ago)
o  We decided to break large clusters into smaller +-20 DB clusters (max 2000 connections)

e What could possibly go wrong?



Docker - benefits

Environment consistent (wkhtmltopdf and latex is always correct)
Installing custom and our own pg extensions in the docker makes life easy
Upgrades can now be done one cluster at a time

Postgresql.conf and hba.conf and everything lives in the data folder
o Base backups copies config with
o One directory contains it all, config and data
o  Snapshots also snapshots config (nice for investigations)



Docker - issues

e Logging is a bit different and needed to be setup correctly
e Shared memory default to low in dockers, had to set higher than shared
buffers



Other Postgres settings

e Stats collector directory should be RAM disk (slow spin disks and ZFS)

e sync_commit = ‘off’
o We're not a bank and if 500ms or even 2 seconds goes lost with a server crash we will take
it.
e Checkpoint = 15 to 30 minutes reduced |10

o  Slow recovery time after a crash
o We really don't have crashes often
o  Waiting 10 minutes for a cluster to start is not that bad



What next?

e Having broken up the clusters into many smaller clusters
e Replica machines worked great until we needed them

o Replication needs to be turned off when using it as a live machine
e Network speeds/costs improved

e New architecture was decided on:

o ZFS and docker everywhere
o Lower machine utilization with easier failover

e Upgrading to postgres 16 sometime



Next/Current architecture

3 to 4 clusters of max 20 databases per cluster replicating two directions
Each group of 4 forms a redundant cluster

DC1 DC2




We are idiots, and still learning... hope this is of use

Welcome to find me afterward and ask anything or please tell us where we
are being silly

Much of what we do is because we really have to manage costs to host
many tiny doctor practices

Our typical machine is Dell 730 12 drive (4 or 8 TB) 768GB ram and
36¢/72t CPU we have more than 30 such machines with around 100
clusters and almost 2200 databases



