
Bounded and Unbounded Data for RAG Systems:
PostgreSQL Is All You Need

Samuel Hu
RisingWave Labs, Jan. 2024

• Wearing multiple hats at RisingWave Labs
- a $40M funded startup - kernel lead,
cloud lead to customer lead.

• Used to be a PostgreSQL kernel hacker
(shared storage, many-core performance
optimization, etc..")

• Founding engineer of Azure PostgreSQL
and MySQL services.

About Me

1. Bounded Data, Static RAG and PostgreSQL

2. Unbounded Data, Real Time RAG and PostgreSQL

3. The Future of PostgreSQL in AI and RAG Systems

RAG empowers LLM, Data empowers RAG.

Structured/Semi-Structured Data are
the Core Value

CRM Finance E-Commerce

name, addr
contact
info,
trx

history

market OHLC
data, trx logs

catalogs,
orders,
pricing,
inventory

forms,
Support
tickets

financial
reports,

market feeds

product skus,
customer
feedbacks

transcript
s,

free-forms

reports,
articles,
tweets

Images,
videos,
customer
reviews

Status Quo: Bounded Data, Static RAG and
PostgreSQL

Postgres Limitation in Unbounded Data and
Real-Time RAG

Write and
Update
Intensive
Workloads

Scalability
Challenges
with Very
Large
Datasets

Vector:
approximate
searching lack
the precision
of relational
algebra.

Real-time
Data
Streaming
and
Processing

Vector: require
full re-
indexing with
in-place
updates.

Imperatives of Real-Time RAG with Unbounded
Data:

Real-time reflections:
Staying attuned to global
events without a lag.

Scalability:
Handle increasing volumes of
data.

Data Integrity and Accuracy:
Consistency and algebra
semantics.

Interoperability:
Integrate with various data
sources, systems, and data
exchange standards.

Unbounded Data, Real Time RAG and PostgreSQL

Can Large Language Models Beat Wall Street? Unveiling the Potential of AI in Stock Selection(G. F., K. M., J. S., D. K., https://""arxiv.org/abs/2401.03737)

Unbounded Data, Real Time RAG and PostgreSQL

❶ Data Collection:
• Clickstream events mapping user activities

(append-only)
• Operational databases showcasing real-time

business operations (upsert)
❷ Streaming Databases: Streaming databases like
RisingWave, data pipelines all-in-PostgreSQL:
• Real-time data transformations and cleanups.
• Efficient data enrichment like joining and

aggregation.
• Real-time indexing, in consistency.

❸ Text to SQL:
• English is the new Postgres client interface

(connector).
❹ Live Data Retrieval:
• Everything is up-to-date through Incremental View

Maintenance.
❺ Real-time RAG:
• Real-time data interpretation.

❻ System Scalability:
• CQRS (Command and Query Responsibility

Segregation).

Unbounded Data, Real Time RAG and PostgreSQL

CREATE TABLE IF NOT EXISTS tickers_bars_1d_yfinance (
 "c" DOUBLE,
 "h" DOUBLE,
 "l" DOUBLE,
 "n" INTEGER,
 "o" DOUBLE,
 "t" BIGINT,
 "v" DOUBLE,
 "vw" DOUBLE,
 "ticker" STRING,
 PRIMARY KEY ("ticker", "t")
) WITH (
 connector = ‘kafka’,
xxx
) ROW FORMAT JSON;

CREATE TABLE IF NOT EXISTS news_currencies_stocks (
 "title" TEXT,
 "link" TEXT,
 "pubDate" TIMESTAMP,
 "publisher" TEXT,
 "summary" TEXT,
 "currencies_impacted" TEXT[],
 "currencies_sentiment_impact" INTEGER[],
 "currencies_impact_reasoning" TEXT[],
 "currencies_impact_confidence_level" INTEGER[],
 "stocks_impacted" TEXT[],
 "stocks_sentiment_impact" INTEGER[],
 "stocks_impact_reasoning" TEXT[],
 "stocks_impact_confidence_level" INTEGER[],
 PRIMARY KEY ("publisher", "link")
) WITH (
 connector = 'kafka',
) ROW FORMAT JSON;

(Data Collection)

Unbounded Data, Real Time RAG and PostgreSQL

CREATE MATERIALIZED VIEW
news_currencies_stocks_unnested AS
SELECT
 "title",
 "link",
 "pubDate" AS "pub_date",
 "publisher",
 "summary",
 unnest("currencies_impacted") AS
"currency_impacted",
 unnest("currencies_sentiment_impact") AS
"currency_sentiment_impact",
 unnest("currencies_impact_reasoning") AS
"currency_impact_reasoning",
 unnest("currencies_impact_confidence_level") AS
"currency_impact_confidence_level",
 unnest("stocks_impacted") AS "stock_impacted",
 unnest("stocks_sentiment_impact") AS
"stock_sentiment_impact",
 unnest("stocks_impact_reasoning") AS
"stock_impact_reasoning",
 unnest("stocks_impact_confidence_level") AS
"stock_impact_confidence_level"
FROM
 news_currencies_stocks;

CREATE MATERIALIZED VIEW daily_stocks_trends_view AS
SELECT lt.ticker,
 lt.c AS current_price,
 (lt.c - pt.c) / pt.c AS relative_price_movement,
 (lt.v - pt.v) / pt.v AS relative_trading_volume,
 CASE
 WHEN prev_ni.sentiment_impact = 0 THEN NULL
 ELSE (ni.sentiment_impact - prev_ni.sentiment_impact) /
prev_ni.sentiment_impact
 END AS relative_sentiment_impact,
 CASE
 WHEN prev_ni.c = 0 THEN NULL
 ELSE (ni.c - prev_ni.c) / prev_ni.c
 END AS relative_news_count,
 TO_CHAR(lt.t, 'YYYY-MM-DD') AS date_part
FROM latest_stock_tickers_bars lt
 JOIN prev_stock_tickers_bars pt ON lt.ticker = pt.ticker
 JOIN news_stock_impacts_view ni ON lt.ticker = ni.stock_impacted
 AND CAST(ni.t AS DATE) = CAST(lt.t AS DATE)
 JOIN prev_news_stock_impacts_view prev_ni ON lt.ticker =
prev_ni.stock_impacted
 AND CAST(prev_ni.t AS DATE) = CAST(pt.t AS DATE);

(Real-time Data Transformation, Enrichment and Serving)

Unbounded Data, Real Time RAG and PostgreSQL

(Real-time RAG)

Thank you!

