
B E Y O N D T H E D E A D L O C K

PostgreSQL Lock
Management

Greg Dostatni DBA @ Command Prompt, Inc
Presenting on April 18, 2024 at Postgres Conference

lmgr internals

Database Case studies

Deadlocks

INTRODUCTION: WHAT IS THIS ABOUT?

LOCK MANAGER 101

Shared Resource

INTRODUCTION: WHAT ARE LOCKS USED FOR?

Mutex Semaphore Lock Barrier Monitor

exclusive access

count-based access

access

synchronized access

access with conditions

INTRODUCTION: MULTI VERSION CONCURRENCY CONTROL

Concurrency

Consistency and Isolation

Optimistic locking

Benefits

Row versioning

Visibility rules

Implementation

Bloat

Transaction ID wraparound

Performance

Considerations

INTRODUCTION: TYPES OF LOCKS

Spinlocks

LWLocks

Regular Locks

SIReadLocks

 Existing Lock Mode

Requested AS RS RE SUE S SRW E AE

Access Share X

Row Share X X

Row Exclusive X X X X

Share Update Exclusive X X X X X

Share X X X X X

Share Row Exclusive X X X X X X

Exclusive X X X X X X X

Access Exclusive X X X X X X X X

LOCKS: TYPES AND INTERACTIONS

LOCK struct

LOCK struct

LOCK struct

INTRODUCTION: PG LOCK MANAGER

Shared Memory

PROCLOCK struct

PROCLOCK struct

PROCLOCK struct

Backend

Backend

BackendLOCALLOCK struct

LOCALLOCK struct

LOCALLOCK struct

LOCALLOCK struct

LOCALLOCK struct

Backend

Backend

Fastpath

Fastpath

Fastpath

Fastpath

Fastpath

REGULAR LOCKS

CASE STUDY 1: INHERITANCE

Parent table

Child 1 Child 2 Child ... Child N

CASE STUDY 1: INHERITANCE

CASE STUDY 1: CONVERT TO NATIVE

BEGIN TRANSACTION;

ALTER TABLE <parent>
RENAME TO <parent_old>;

CREATE TABLE <parent>
 (
 LIKE <parent_old>
 INCLUDING INDEXES
 INCLUDING COMMENTS
 INCLUDING CONSTRAINTS
) PARTITION BY
RANGE(<partition_key>);

For every child table:

 ALTER TABLE <child> NO INHERIT
<parent>;

 ALTER TABLE <parent>
 ATTACH PARTITION <child>
 FOR VALUES FROM (<from>) TO
(<to>);

DROP TABLE <parent>;
COMMIT;

Delete Records
Slow, high IO, possible table bloat

Detach and drop partition
Fast, but requires an exclusive lock
on parent
Use lock_timeout to fail gracefully
and try again

Truncate partition
Reclaim space without locking
parent
Detach is still required

CASE STUDY 2: NATIVE PARTITIONING

Cleanup / Archiving

CASE STUDY 2: NATIVE PARTITIONING

CREATE PROCEDURE del_records
 (plimit integer, psleep decimal)
LANGUAGE PLPGSQL
AS $$
DECLARE
 _r record; _count integer; _ids int[];
BEGIN

 LOOP
 SELECT array_agg(<pkey>)
 INTO _ids FROM (
 SELECT <pkey> from <table> limit plimit
) sub ;

 EXIT WHEN array_length(_ids, 1) IS NULL;

 BEGIN
 DELETE FROM <table> where pkey =
ANY(_ids);
 COMMIT;
 END;

 PERFORM pg_sleep(psleep);

 END LOOP;

END; $$;

Run in separate session
outside of transaction

BEGIN;
 <query>
 -- execute query on right
 -- before rollback
ROLLBACK;

SELECT
 a.query,
 array_agg(
 DISTINCT l.relation::regclass::text || ':' ||
 l.mode
) AS locks
FROM
 pg_stat_activity a
JOIN
 pg_locks l ON l.pid = a.pid
WHERE
 a.state <> 'idle' AND
 l.relation IS NOT NULL AND
 a.query NOT ILIKE '%pg_stat_activity%'
GROUP BY a.query
ORDER BY a.query;

LOCKS: INVESTIGATION

Not in production

AccessExclusiveLock,
AccessExclusiveLock,
ShareLock,
AccessExclusiveLock,
AccessExclusiveLock,
ShareLock

post_tags
post_tags_pkey

post_tags
tags

tags_pkey
tags

LOCKS: MONITORING

log_lock_waits
deadlock_timeout

max_locks_per_transaction
lock_timeout

Configuration

pg_locks
pg_stat_activity

pg_blocking_pids(PID)

Realtime

Which transaction is
blocked?

1.

Which transaction is doing
the blocking?

2.

Which objects are locked the
most?

3.

Which locks is this query
trying to acquire?

4.

What is the average waiting
time for a lock right now?

5.

Questions

LIGHTWEIGHT LOCKS

CASE STUDY 3: SUBTRANSACTIONS

BEGIN;
...
EXCEPTION
 WHEN ... THEN ... ;
END;

BEGIN;
...
SAVEPOINT s1;
...
SAVEPOINT s2;
...
COMMIT;

CASE STUDY 3: SUBTRANSACTIONS - MULTIXACT IDS

https://buttondown.email/nelhage/archive/notes-on-some-postgresql-implementation-details/

Row level locks are stored on disk in the header
of the tuple.

Multixact ID represents an immutable set of
locking transaction IDs stored in a global

MultiXact store.
Any access to MuliXact is controlled by a single

global LWLock.

Taking out an exclusive lock on a row, but
performing the work in subtransaction results in

the use of multixact IDs.

SELECT [some row] FOR UPDATE;
SAVEPOINT save;

UPDATE [the same row];

https://buttondown.email/nelhage/archive/notes-on-some-postgresql-implementation-details/

CASE STUDY 3: SUBTRANSACTIONS - SLRU OVERFLOW

https://postgres.ai/blog/20210831-postgresql-subtransactions-considered-harmful

Primary:
Subtransactions issuing updates

Ongoing long-running transaction

Standby:
Selects dealing with the same tuples.

pg_subtrans

https://gitlab.com/postgres-ai/postgresql-consulting/tests-and-benchmarks/-/issues/21

Primary

Standby

https://postgres.ai/blog/20210831-postgresql-subtransactions-considered-harmful

Access to shared memory
structures

Meant for internal processes

Provide shared and exclusive
lock modes

LWLOCKS: LIGHTWEIGHT LOCKS

LWLOCKS: PG_STAT_ACTIVITY

Waiting Locking

Client
Extension
IO
IPC
Timeout

Buffer Pin
Lock
LWLock
Extension

LWLock events

LockManager
Buffer*
MultiXact*
WAL*

https://www.postgresql.org/docs/16/monitoring-stats.html#WAIT-EVENT-LWLOCK-TABLE

Lock Manager is
awesome

Problems may be
difficult to
diagnose

Read the source

It is a complex
system

TAKEAWAYS

MONITORING RESOURCES

wiki.postgresql.org/wiki/Lock_Monitoring

PostgreSQL documentation and source

https://github.com/lesovsky/pgcenter

https://www.postgresql.org/docs/16/runtime-
config-developer.html

perf top

perf record --call-graph dwarf -F 500 -a sleep 5
perf report --no-children --sort comm,symbol

https://github.com/jnidzwetzki/pg-lock-tracer

https://www.postgresql.org/docs/16/monitoring-
stats.html#WAIT-EVENT-TABLE

https://github.com/lesovsky/pgcenter
https://www.postgresql.org/docs/16/runtime-config-developer.html
https://www.postgresql.org/docs/16/runtime-config-developer.html
https://www.postgresql.org/docs/16/monitoring-stats.html#WAIT-EVENT-TABLE
https://www.postgresql.org/docs/16/monitoring-stats.html#WAIT-EVENT-TABLE

QUESTIONS?

THANK YOU!

