
Zero Downtime PostgreSQL Major Version
Upgrades

GitLab Copyright

Biren Shah
Senior Database Reliability Engineer

GitLab Copyright

This talk will discus:

● How we execute PostgreSQL major upgrades at GitLab, with zero* downtime.

By answering these questions:

● PostgreSQL Upgrades - How do they work and why are they hard?
● How did GitLab.com perform these upgrades in the past?
● Why did we need to improve?
● How did we improve to minimize impact to our users?

Agenda

GitLab Copyright

README

● Slides showing the white triangle in the top left corner are not shown during
presentations

● They are added to provide more context when reading the slides

GitLab Copyright

What is zero down time?

GitLab Copyright

What is zero down time?

● All services need to stay available to end users!

GitLab Copyright

What is zero down time?

● All services need to stay available to end users!
● What is “available” here ?

○ That’s up for debate :)
○ Acceptable response times need to be defined
○ Service Level Objectives (SLO)

GitLab Copyright

What is GitLab using for performance measuring?

● Apdex (Application Performance Index)
○ Open standard developed by an alliance of companies for measuring

performance of software applications in computing. [...] It is based on
counts of "satisfied", "tolerating", and "frustrated" users, [...]

○ Requires tuned thresholds to classify samples
○ Details: wikipedia.org/wiki/Apdex

https://en.wikipedia.org/wiki/Apdex

GitLab Copyright

Why are PostgreSQL Major Upgrades hard?

● Major releases (can) change the layout of system tables
○ Internal data storage format rarely changes drastically
○ Mostly added or changed metadata fields

● Data files can not be used by newer versions
● Rewriting of system tables and metadata is necessary
● Depending on data size and complexity this can take significant time

GitLab Copyright

Upgrade Methods - pg_dumpall

2.
physical to logical
(binary to SQL*)

3.
logical to physical
(SQL* to binary)

4.
index (re)creation
statistic collection

1.
maintenance mode
 (DB becomes RO)

SQLSource Target

GitLab Copyright

Upgrade Methods - pg_dumpall

● Data is extracted and brought to a logical representation
○ SQL, or optimized internal format

● Logical data is then imported in the new cluster
● Both operations are resource and time consuming

○ Can be performed in parallel to disk
OR

○ Piped from old to new cluster
● All data gets validated
● All indexes are freshly created
● No bloat in the new cluster

GitLab Copyright

Upgrade Methods - pg_dumpall

Best use case

● Safest method available, but requires longest downtime
○ Hard to provide universal numbers: ~20 TiB DB may take ~1 day

● If this fulfills your needs, it’s the safest option! Don’t look any further!

GitLab Copyright

Upgrade Methods - pg_upgrade

Source

2.
In-place upgrading

binary data

1.
Maintenance mode

(offline / RO with standby)

GitLab Copyright

Upgrade Methods - pg_upgrade

Target
Source

2.
In-place upgrading

binary data

1.
Maintenance mode

(offline / RO with standby)

GitLab Copyright

Upgrade Methods - pg_upgrade

● The physical data structures needing adjustment are rewritten either:
○ in a data copy
○ in-place utilizing hard links

● In-place rewrite is quite fast, depending on the data size
● Rewrite requires downtime
● No rollback possible, e.g. should the new version not perform as required
● Additional post upgrade steps might be necessary or advised

○ Eg. recreating indexes to utilize new b-tree optimizations

Target
Source

GitLab Copyright

Upgrade Methods - pg_upgrade

Best use case

● Reasonable fast
● Reasonable safe
● Quite simple
● If validation or benchmarking steps are required, this expands the downtime!
● If this fulfills your needs, it’s a safe and simple option! Don’t look any further!

Target
Source

GitLab Copyright

How did we perform Upgrades in the past?

GitLab Copyright

GitLab Database Architecture

GitLab Copyright

GitLab Copyright

How did we perform Upgrades in the past?

pg_upgrade, with significant downtime

1. Create second cluster from backup
2. Sync new with main cluster (streaming replication)
3. Put GitLab.com into maintenance
4. Used pg_upgrade to upgrade primary
5. Re-create all standbys from primary
6. Run full QA tests and benchmark on new cluster (multiple hours)
7. Switch application to use new cluster
8. Bring GitLab.com back online

GitLab Copyright

Why did we need to improve?

● Impact was not acceptable
○ Inconvenient for our customers
○ Responsible for most of our downtime

● PostgreSQL upgrades were avoided to minimize the impact
○ We were running PG12 at the beginning of 2023

GitLab Copyright

How to improve, to minimize impact for users?

Optimizing the old process
● Most time is “lost” due to benchmarking the new cluster
● Removing tests would bring downtime from hours to ~minutes
● Deemed too dangerous, due to:

○ Possibility of long lasting impact
○ No rollback without data loss, after upgrade

OR

Utilization of logical replication to upgrade asynchronous during normal operation

GitLab Copyright

logical replication + pg_upgrade

1. Create and sync new
instance

Source

Source2

GitLab Copyright

logical replication + pg_upgrade
Source

Target
Source2

2. Upgrade new cluster
 (no sync during upgrade)

GitLab Copyright

logical replication + pg_upgrade
Source

Target

3. Resync with LR

GitLab Copyright

logical replication + pg_upgrade

Target

4.Switchover Application

Source

GitLab Copyright

logical replication + pg_upgrade

1.
Sync new instance with

2.
Upgrade new cluster,

no sync during upgrade

3.
Resync with LR

4.
Switchover App.

Source Source Source

Source2

Source2 Target Target Target

GitLab Copyright

logical replication

● Replicate changes across different:
○ PostgreSQL versions
○ Operation Systems (libc version)
○ CPU Architectures

● Enables us to execute major upgrades asynchronously

GitLab Copyright

logical replication

What is the catch?

1. Database schema and DDL commands are not replicated!
2. Sequences are not replicated, but are needed for auto increment values
3. Each table needs a REPLICA IDENTITY, to distribute changes

○ Primary key
○ Other unique key
○ FULL, last resort, all changes need to be recorded

4. More complex
○ Prone to human errors
○ Automation and testing is highly advised

GitLab Copyright

logical replication - DDL is not replicated

● Schema changes would break logical replication!
○ No DDL allowed: CREATE, ALTER, DROP

● The initial schema is also not replicated

GitLab Copyright

logical replication - DDL is not replicated

Our solution

● We disabled all background migration and maintenance jobs, which did the
trick! You need to check YOUR applications DDL usage!
○ Disabling such jobs for reducing load is advised in any case

● Start from the latest backup, not from an empty database
○ No manual schema export required
○ No unnecessary logical transformation of historical data

GitLab Copyright

logical replication - Sequences are not replicated

● Sequences are vital to PostgreSQL
○ Generates unique sequential numbers wherever they are needed
○ Used for SERIAL (AUTO INCREMENT)

GitLab Copyright

logical replication - Sequences are not replicated

Our solution

● Measure the daily growth of all sequences
● Defined a large “sequences buffer value”, eg. 1 million
● Increase the sequences on the NEW cluster by this value
● Before switchover check that the sequences on OLD, have not grown more

than expected (optional)
● Simple solution, only uses up a fraction of the keyspace of 64 bit integer

GitLab Copyright

logical replication - REPLICA IDENTITY

● Each table needs a REPLICA IDENTITY, to distribute changes
○ Primary key
○ Other unique key
○ FULL, last resort, all changes need to be recorded

GitLab Copyright

logical replication - REPLICA IDENTITY

Our solution

● Nothing to do, we already had primary keys :D

GitLab Copyright

logical replication - Complexity

● More complex
○ Prone to human errors
○ Automation and testing is highly advised

GitLab Copyright

logical replication - Complexity

Our solution

● Complete automation
○ Orchestration via Ansible
○ Process as CR issue which could be executed repetitively

● Excessive testing - “If it hurts, do it more often”
○ Intense QA tests before switchover, rollback if not perfect
○ Dry runs in production

■ All steps until switchover
■ Measure timings, performance metrics
■ Iterate on QA test suite and process

GitLab Copyright

Improved process with logical replication

GitLab Copyright

Upgrade - 1. Prepare new Environment
Source

Source2

GitLab Copyright

Upgrade - 1. Prepare new Environment

GitLab Copyright

Upgrade - 2 Upgrade new Cluster
Source

Target
Source2

GitLab Copyright

Upgrade - 2.1 Upgrade new Cluster

GitLab Copyright

Upgrade - 2.2 Upgrade new Cluster

GitLab Copyright

Upgrade - 2.3 Upgrade new Cluster

GitLab Copyright

Upgrade - 3. Prepare Switchover

GitLab Copyright

Upgrade - 4. Switchover

Target

Source

GitLab Copyright

Upgrade - 4. Switchover

GitLab Copyright

Upgrade - 5. Post Switchover Verification

GitLab Copyright

How did we achieve Zero-Downtime?

● PgBouncer - RESUME

● PgBouncer - PAUSE

● Wait until the logical replication lag is zero bytes

GitLab Copyright

Did we improve?

GitLab Copyright

How well did we do? - Web

GitLab Copyright

How well did we do? - API

GitLab Copyright

How well did we do? - Git

GitLab Copyright

Upgrade - Possible Improvements?

Reverse Replication
● After the Switchover, the old cluster replicates data from the new cluster
● Enables late rollback without data loss

GitLab Copyright

Upgrade - Possible Improvements?

GitLab Copyright

Upgrade Switchover - Possible Improvements?

GitLab Copyright

Switchover - Reverse Logical Replication

GitLab Copyright

Switchover - Reverse Logical Replication

GitLab Copyright

Resources
● GitLab: about.gitlab.com
● The Handbook: about.gitlab.com/handbook
● Our RDBMS: about.gitlab.com/handbook/engineering/infrastructure/database
● Ansible Playbooks: https://gitlab.com/gitlab-com/gl-infra/db-migration

○ Developed with the help of postgres.ai
● Thanks - DBREs, SREs, QA, GitLab leadership and everybody involved
● Slide deck with addition annotations: postgresconf.org/conferences/2024
● Biren Shah

○ about.gitlab.com/company/team/#bshah11

https://about.gitlab.com/
https://about.gitlab.com/handbook/
https://handbook.gitlab.com/handbook/engineering/infrastructure/production/architecture/#database-architecture
https://gitlab.com/gitlab-com/gl-infra/db-migration
https://postgres.ai/
https://postgresconf.org/conferences/2024/program/proposals/zero-downtime-postgres-major-version-upgrade
https://about.gitlab.com/company/team/#bshah11

GitLab Copyright

Interested in ALL the details?
● Main epic https://gitlab.com/groups/gitlab-com/gl-infra/-/epics/642

○ [PHASE-1][PG13] Investigate migration approaches
○ [PHASE-2][PG14] Benchmark the performance and tuning for PG14
○ [PHASE-3][PG14] Playbook development & benchmark testing
○ [PHASE-4][PG14] Rollout upgrade in [GSTG]
○ [PHASE-5][PG14] Rollout upgrade in [GPRD]
○ [PHASE-6][PG14] Post-Upgrade tasks

● Flow chart source
https://gitlab.com/gitlab-com/gl-infra/db-migration/-/blob/master/.gitlab/issu
e_templates/pg14_upgrade.md?ref_type=heads#high-level-overview

https://gitlab.com/groups/gitlab-com/gl-infra/-/epics/642
https://gitlab.com/groups/gitlab-com/gl-infra/-/epics/794
https://gitlab.com/groups/gitlab-com/gl-infra/-/epics/795
https://gitlab.com/groups/gitlab-com/gl-infra/-/epics/796
https://gitlab.com/groups/gitlab-com/gl-infra/-/epics/801
https://gitlab.com/groups/gitlab-com/gl-infra/-/epics/802
https://gitlab.com/groups/gitlab-com/gl-infra/-/epics/803
https://gitlab.com/gitlab-com/gl-infra/db-migration/-/blob/master/.gitlab/issue_templates/pg14_upgrade.md?ref_type=heads#high-level-overview
https://gitlab.com/gitlab-com/gl-infra/db-migration/-/blob/master/.gitlab/issue_templates/pg14_upgrade.md?ref_type=heads#high-level-overview

GitLab Copyright

Questions?

● Now!
● During the event!
● Later!
○ LinkedIn

https://www.linkedin.com/in/birenshah123/

GitLab Copyright

Appendix
● DDL silence window - single ops feature flag
● Physical-to-logical and possible data corruption
● Patroni bug for secondary cluster
● Multiple slots, publication for specific tables
● Minor degradations in query plans (involving enable_memoize)
● DNS changes vs. load balancer code (slow propagation of changes / caching)
● Determining the lag values for secondary cluster’s (target) replicas with respect to

the original primary
● PGConf.EU 2023 - Talk on the same topic
● PG16 Upgrade Epic

https://gitlab.com/gitlab-org/gitlab/-/issues/417161
https://gitlab.com/gitlab-com/gl-infra/production/-/issues/15925
https://gitlab.com/gitlab-com/gl-infra/db-migration/-/merge_requests/470
https://gitlab.com/gitlab-com/gl-infra/reliability/-/issues/23986#note_1516305310
https://gitlab.com/gitlab-com/gl-infra/reliability/-/issues/24339
https://gitlab.com/gitlab-org/gitlab/-/issues/423382
https://gitlab.com/gitlab-com/gl-infra/reliability/-/issues/23578
https://gitlab.com/gitlab-com/gl-infra/reliability/-/issues/23578
http://pgconf.eu
https://gitlab.com/groups/gitlab-com/gl-infra/-/epics/1239

