
Dane Falkner 
Postgres Conference 2024

Optimizing for Excellence: Advanced 
Performance Tuning Techniques for 

Aurora Postgres
And an interesting application localizing PII with Aurora and 

Foreign Data Wrappers 



Dane Falkner
https://www.linkedin.com/in/dfalkner/

• RiskRecon (a Mastercard Company) — Administration, tuning, management, 
design, and refactoring of over 20 highly available Amazon Aurora databases 
as large as twenty terabytes across regions and countries supporting cyber 
intelligence functions and services


• Surgeworks, Inc. — Data Warehouse Design and Implementation for multiple 
regional banks and countless database engineering consultation 
engagements over four decades


• Founding member of the Agile Alliance, Independent Signatory, first 
Chairperson for DSDM (Dynamic Systems Development Method) in North 
America. Signing of the Agile Manifesto…I was there.



Goals
• Provide an overview of the levers to achieve high performance


• Brief overview of Aurora architecture as it relates to performance


• Introduction to key monitoring tools


• Overview of configuration parameters


• An interesting, for some, application of Aurora Postgres for regional 
separation of PII using global and regional clusters and foreign data wrappers 
(FDW)



Your levers
(we won’t cover all of this today)

• Instance size and type -> compute, memory, network


• Configuration -> parameters (cluster level and instance level)


• Aurora wait states and performance monitoring/tuning


• Schema and SQL Query optimization for Aurora architecture


• Indexes, their types, optimized for their usage mindful of Aurora architecture 

• Memory management (sessions, work_mem, buffers, etc.)



Aurora Storage
• Conceptually, a SAN distributed across three AWS Availability Zones (AZs) decoupled from compute


• Protection groups — 10 GB logical blocks are replicated between six storage nodes allocated across three AZs.


• Writes are sent to six storage nodes in parallel (complete with 4/6 nodes ack) . 


• Reads are satisfied by 3/6 nodes, but more often only 1



Understanding Aurora Postgres Architecture
A few more performance enhancing features

• Buffer pool lives in separate address space from server so more shared buffer 
space and fast recovery


• Shared buffers are 75% of RAM in Aurora vs 25% in RDS for a given instance


• Cluster cache management (apg_ccm_enabled=on) keeps replica cache hot


• Query Plan Management (QPM)



AWS DB Instances
Aurora Serverless v2
• Aurora adjusts the compute, memory, and network resources dynamically as the workload changes.


Memory-optimized R family instance class types
• db.r7g — AWS Graviton3 processors


• db.r6g — AWS Graviton2 processors


• db.r6i — 3rd Generation Intel Xeon Scalable processors


• db.r5 — Intel Xeon Platinum


vCPUs, Memory, and Network performance are based on size ranging from .large to .32xlarge 

See https://aws.amazon.com/rds/instance-types/



Aurora Postgres wait events



Source: https://docs.aws.amazon.com/prescriptive-guidance/latest/amazon-rds-monitoring-alerting/db-instance-performance-insights.html

Performance Insights

https://docs.aws.amazon.com/prescriptive-guidance/latest/amazon-rds-monitoring-alerting/db-instance-performance-insights.html


Enhanced Monitoring and CloudWatch

Source: https://docs.aws.amazon.com/prescriptive-guidance/latest/amazon-rds-monitoring-alerting/os-monitoring.html

https://docs.aws.amazon.com/prescriptive-guidance/latest/amazon-rds-monitoring-alerting/os-monitoring.html


Aurora Postgres Parameters
Aurora uses a two-level system for configuration settings
DB cluster parameter group 
- Applies to every DB instance within the cluster 
- 413 parameters, 373 are modifiable


DB parameter group 
- Applies to a single DB instance within the cluster 
- Where the parameters overlap with DB cluster parameters they supersede  
- 300 parameters, 268 are modifiable 
 
RDS Postgres (not Aurora) 
- 395 parameters, 348 are modifiable 
 
Aurora can assign default parameter groups at creation, but specify custom groups 
- default groups do not allow changes and require reboot to apply custom groups 
- parameters are your levers for tuning, troubleshooting, and logging 
- many parameters can be changed without restart 
- use Performance Insights, Enhanced Monitoring, and CloudWatch to inform your parameter changes 
- notably, parameters for checkpoints, bgwriter_lru_maxpages, and others are missing



Schema
Database physical design for Aurora

• Partition large tables


• Index according to access patterns and experiment with different index types


• Storing data  
- third-normal form or dimensional — ORM’s? 
- proper data types 
- alignment with fixed length columns before variable columns for efficient 
storage in pages 
- add defaults after loading tables so defaults are not stored during load



Strategies for Aurora
But, not enough time in this session 

• Indexing strategies and maintenance


• Query optimization that leverage Aurora's capabilities


• Vertical and horizontal scaling strategies with Aurora 


• Query Plan Management (QPM)



An interesting application of Aurora
Global data with PII data kept local

How does a global company running applications in many countries keep 
customers and users data localized to a country or region while continuing to 
share data on global level?


Solution involves:


• Aurora Global Cluster


• RDS Postgres database or Aurora regional clusters


• Foreign Data Wrappers



Global Aurora Cluster (USA - EU) and Local DBs



AWS Console in Oregon (us-west-2)

AWS Console in Ireland (eu-west-1)
Local to  
each region



Step 1: Create users table in each (local) region db

Oregon (us-west-2) Ireland (eu-west-1) uuids would be 
much better in the 

real world



Step 2: Create foreign tables in global cluster
Oregon users table



Step 2: Create foreign tables in global cluster
Ireland users table



Step 3: Create parent users table and attach partitions 
Within global cluster



Insert users in the global db

SELECT *  
FROM USERS;

SELECT *  
FROM us_local.us_users;

SELECT *  
FROM eu_local.eu_users;



EXPLAIN ANALYSE  
SELECT * FROM users;



Final Step: Map limited permission roles to FDW
USA roles have no permission to access EU users and vice versa


