Optimizing for Excellence: Advanced
Performance Tuning Techniques for
Aurora Postgres

And an interesting application localizing Pll with Aurora and
Foreign Data Wrappers

Dane Falkner
Postgres Conference 2024

Dane Falkner

https://www.linkedin.com/in/dfalkner/

* RiskRecon (a Mastercard Company) — Administration, tuning, management,
design, and refactoring of over 20 highly available Amazon Aurora databases

as large as twenty terabytes across regions and countries supporting cyber
intelligence functions and services

o Surgeworks, Inc. — Data Warehouse Design and Implementation for multiple
regional banks and countless database engineering consultation
engagements over four decades

 Founding member of the Agile Alliance, Independent Signatory, first
Chairperson for DSDM (Dynamic Systems Development Method) in North
America. Signing of the Agile Manifesto...l was there.

Goals

* Provide an overview of the levers to achieve high performance

* Brief overview of Aurora architecture as it relates to performance
* |ntroduction to key monitoring tools

* Overview of configuration parameters

* An interesting, for some, application of Aurora Postgres for regional
separation of Pll using global and regional clusters and foreign data wrappers
(FDW)

Your levers

(we won’t cover all of this today)

* Instance size and type -> compute, memory, network

 Configuration -> parameters (cluster level and instance level)

* Aurora wait states and performance monitoring/tuning

 Schema and SQL Query optimization for Aurora architecture

® Indexes, their types, optimized for their usage mindful of Aurora architecture

o Memory management (sessions, work_mem, buffers, etc.)

Aurora Storage

 Conceptually, a SAN distributed across three AWS Availability Zones (AZs) decoupled from compute

* Protection groups — 10 GB logical blocks are replicated between six storage nodes allocated across three AZs.
* Writes are sent to six storage nodes in parallel (complete with 4/6 nodes ack) .

* Reads are satisfied by 3/6 nodes, but more often only 1

Volume

10 GB Protection Group 10 GB Protection Group

Availability Zone || Availability Zone || Availability Zone Availability Zone || Availability Zone || Availability Zone

Storage Node
Storage Node
Storage Node
Storage Node
Storage Node
Storage Node
Storage Node
Storage Node
Storage Node
Storage Node
Storage Node
Storage Node

Understanding Aurora Postgres Architecture

A few more performance enhancing features

« Buffer pool lives in separate address space from server so more shared buffer
space and fast recovery

 Shared buffers are 75% of RAM in Aurora vs 25% in RDS for a given instance
» Cluster cache management (apg_ccm_enabled=0on) keeps replica cache hot

e Query Plan Management (QPM)

AWS DB Instances

Aurora Serverless v2
* Aurora adjusts the compute, memory, and network resources dynamically as the workload changes.

Memory-optimized R family instance class types
* db.r7g — AWS Graviton3 processors

 db.rég — AWS Graviton2 processors
* db.r6i — 3rd Generation Intel Xeon Scalable processors
 db.r5 — Intel Xeon Platinum

vCPUs, Memory, and Network performance are based on size ranging from .large to .32xlarge

See https://aws.amazon.com/rds/instance-types/

Aurora Postgres wait events

Wait event

Client:ClientRead
Client:ClientWrite
CPU

|0:BufFileRead and
|O:BufFileWrite

|O:DataFileRead
10:XactSync

IPC:DamRecordTxAck

Lock:advisory
Lock:extend
Lock:Relation
Lock:transactionid
Lock:tuple

LWLock:buffer _content
(BufferContent)

LWLock:buffer_mapping

LWLock:BufferlO
(IPC:BufferlO)

LWLock:lock_manager

LWLock:MultiXact

Timeout:PgSleep

Definition

This event occurs when Aurora PostgreSQL is waiting to receive data from the client.
This event occurs when Aurora PostgreSQL is waiting to write data to the client.
This event occurs when a thread is active in CPU or is waiting for CPU.

These events occur when Aurora PostgreSQL creates temporary files.

This event occurs when a connection waits on a backend process to read a required page from storage because the page isn't available in shared memory.

This event occurs when the database is waiting for the Aurora storage subsystem to acknowledge the commit of a regular transaction, or the commit or rollback of a
prepared transaction.

This event occurs when Aurora PostgreSQL in a session using database activity streams generates an activity stream event, then waits for that event to become
durable.

This event occurs when a PostgreSQL application uses a lock to coordinate activity across multiple sessions.

This event occurs when a backend process is waiting to lock a relation to extend it while another process has a lock on that relation for the same purpose.
This event occurs when a query is waiting to acquire a lock on a table or view that's currently locked by another transaction.

This event occurs when a transaction is waiting for a row-level lock.

This event occurs when a backend process is waiting to acquire a lock on a tuple.

This event occurs when a session is waiting to read or write a data page in memory while another session has that page locked for writing.

This event occurs when a session is waiting to associate a data block with a buffer in the shared buffer pool.

This event occurs when Aurora PostgreSQL or RDS for PostgreSQL is waiting for other processes to finish their input/output (I/0) operations when concurrently trying
to access a page.

This event occurs when the Aurora PostgreSQL engine maintains the shared lock's memory area to allocate, check, and deallocate a lock when a fast path lock isn't
possible.

This type of event occurs when Aurora PostgreSQL is keeping a session open to complete multiple transactions that involve the same row in a table. The wait event
denotes which aspect of multiple transaction processing is generating the wait event, that is, LWLock:MultiXactOffsetSLRU, LWLock:MultiXactOffsetBuffer,
LWLock:MultiXactMemberSLRU, or LWLock:MultiXactMemberBuffer.

This event occurs when a server process has called the pg_sleep function and is waiting for the sleep timeout to expire.

Database load . Chart type @ Bar v Sliceby @ Waits v
Current activity measured in average active sessions (AAS) Info P e rfO rm a n C e I n S I g h tS
Show max vCPU
Average active sessions (AAS)
-- JE """"""""""""""""""""""""""""""""""" Il wait/synch/mutex/innodb/trx_mutex
E Nov 15 17:27 ~ waitllock/ftable/sql/handler
-~ I E B wait/synch/mutex/innodb/rx_mu 0. 0% [wait/synch/sxlock/innodb/btr_search
| E B wait/synch/sxlock/innodb/btr_s 0, 0% U wait/synch/mutex/sql/MYSQL_BIN_LOG:
" | E wait/synch/mutex/sql/MYSQL_BIN 0, 0% wait/synch/cond/sql/MYSQL_BIN_LOG::
I | . W wait/synch/mutex/sql/MYSQL_BIN 1, 33% wait/ioffile/sqlbinlog
E wait/synch/cond/sql/MYSQL_BIN_ 0, 0% wait/io/socket/sql/client_connectio
E wait/io/file/sql/binlog 0.0% g waitfioftable/sql/handler
10+ i | wait/io/socket/sql/client_conn 0,0% mmcpu
I | B wait/io/table/sgl/handler 1,33% __ \ax vCPUs
| H CPU 1, 33%
5- | ; Total DB load 3
Il -- Max vCPUs 2
- = = = —r— . LA A A & & & & & B B B B B B B B B &R &R B B &R &R B &R B R B R R B R B &R B &R B B B B R & &R &R B &R B &R R _ B F 1 1T B2 = B=J k=4 L= P 2 d R = 5 2 B < = IL T— - -m - - - - e ere - - —— — ————————————— ———
o |1[|| ||| IMIIIh L ||]||| Il | | | | | J ||]g|||||| | | I [l II | AT |I LA ,||| L "ll, |
17:24 17:24:20 17:24:40 17:25 17:25:20 17:25:40 17:26 17:26:20 17:26:40 17:27 7:27:40 17:28 17:28:20 17:28:40
Time (UTC)
Top waits Top SQL Top hosts Top users Top databases
Top SQL (25) Learn more [£
Q. Find SQL stateme: 12 3 > @
Load by waits (AAS) SQL statements Calls/sec Avg latency (ms... Rows examined...
= 076 coMMIT : : :
= | | 040 SELECT "¢’ FROM "sbtest3” WHERE 'id" =7 : : :

Source: https://docs.aws.amazon.com/prescriptive-guidance/latest/amazon-rds-monitoring-alerting/db-instance-performance-insights.html

https://docs.aws.amazon.com/prescriptive-guidance/latest/amazon-rds-monitoring-alerting/db-instance-performance-insights.html

Enhanced dWatch

Monitoring and Clou

Summary

DB identifier CPU Status Class

database-3 s | 50.84% © Avallable db.még.large

Role Current activity Engine Region & AZ

Instance Z) 0.00 sessions MariaDB eu-west-3a

Connectivity & security Monitoring Logs & events Configuration Maintenance & backups Tags

CloudWatch (18! ’ C Add Instance to compare Monitoring ¥ Last Hour ¥

Legend: | database-3

Q 1 @
CPU Utilization (Percent) DB Connections (Count] Free Storage Space (MEB]
100 20,000
600
75 15,000
50 "0 10,000
25 200 5,000
0 0 ~— . o
/1 1/21 11/21 1/21 11/21 11/21
12:30 13:00 12:30 13:00 12:30 13:00
Freeable Memory (MB) Write IOPS (Count/Second Read IOPS (Count/Second)
6,000 400 40
4,000 300 30
200 20
4000 100 10
0 0 0
11/21 /21 11/21 1/21 11/21 1 /21
12:30 13:.00 12:30 13:00 12:30 13:00

Source: https://docs.aws.amazon.com/prescriptive-guidance/latest/amazon-rds-monitoring-alerting/os-monitoring.html

https://docs.aws.amazon.com/prescriptive-guidance/latest/amazon-rds-monitoring-alerting/os-monitoring.html

Aurora Postgres Parameters

Aurora uses a two-level system for configuration settings

DB cluster parameter group
- Applies to every DB instance within the cluster
- 413 parameters, 373 are modifiable

DB parameter group

- Applies to a single DB instance within the cluster

- Where the parameters overlap with DB cluster parameters they supersede
- 300 parameters, 268 are modifiable

RDS Postgres (not Aurora)
- 395 parameters, 348 are modifiable

Aurora can assign default parameter groups at creation, but specify custom groups

- default groups do not allow changes and require reboot to apply custom groups

- parameters are your levers for tuning, troubleshooting, and logging

- many parameters can be changed without restart

- use Performance Insights, Enhanced Monitoring, and CloudWatch to inform your parameter changes
- notably, parameters for checkpoints, bgwriter_lru_maxpages, and others are missing

Schema

Database physical design for Aurora

» Partition large tables

* |ndex according to access patterns and experiment with different index types

o Storing data
- third-normal form or dimensional — ORM’s?
- proper data types
- alignment with fixed length columns before variable columns for efficient
storage In pages
- add defaults after loading tables so defaults are not stored during load

Strategies for Aurora

But, not enough time in this session

* |ndexing strategies and maintenance
* Query optimization that leverage Aurora's capabilities
* \ertical and horizontal scaling strategies with Aurora

e Query Plan Management (QPM)

An interesting application of Aurora
Global data with Pll data kept local

How does a global company running applications in many countries keep
customers and users data localized to a country or region while continuing to
share data on global level?

Solution involves:
* Aurora Global Cluster
 RDS Postgres database or Aurora regional clusters

* Foreign Data Wrappers

Global Aurora Cluster (USA - EU) and Local DBs

[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(

" Aurora Global Cluster

Aurora USA

users ‘ companies
id uuid id PK
name varchar name varchar
dob date
phone varchar
locale char(2)
company_id |integer =
_________ FE“\
|
[e care narfitinn) Foreign |
us_users partltlon Tables |
|
name Vv [
IdOb Idg_id Tuuid _: :
|
lphone Iv name varchar | [
|
:Iocale chydob Idate | :
Lcori)aﬂ—id_ ! m phone |varchar | :
locale | char(2) | :
|
[J :

USA -

Europe —»

Aurora EU

[
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l

|
name Vv
:dob Idg_id Tudid
phone lv name varchar
:Iocale lc dob |date |
company_id Iiﬁphone varchar |
o | |
ocale | char(2) |
I

. users [companies
y id uuid id PK
* name varchar name varchar
. dob date
AWS phone varchar

Replication locale | char(2)

- company_id |integer
< - > E >
. [us_users partition ! 1 FTZ’:I’;-:I:
e

N

Regional EU Cluster

K,,/

| users ‘

id uuid

name varchar

dob date

phone varchar

locale char(2)
company_id |integer

~—

. \

' :
. Y| users

° id uuid

¢ name varchar

¢ dob date

®

. phone varchar

. locale char(2)

° company_id |integer

. ~—

AWS Console in Oregon (us-west-2)

global

euwest

euwest1-instance-1

uswest?2

uswest2-instance-1

us-local

Local 10 il
each region |

® Available
® Available
® Available
® Available

® Available

® Available

Global database
Secondary cluster
Reader instance
Primary cluster

Writer instance

Instance PostgreSQL

AWS Console in Ireland (eu-west-1)

Aurora PostgreSQL

Aurora PostgreSQL

Aurora PostgreSQL

Aurora PostgreSQL

Aurora PostgreSQL

us-west-2a

2 regions 2 clusters
eu-west-1 1 instance
eu-west-1c db.rég.large
us-west-2 1 instance
us-west-2a db.r6g.large

db.t3.micro

eu-local

global

euwest

euwest1-instance-1

uswest2

uswest2-instance-1

® Available
® Available
® Available
® Available
® Available

® Available

Instance PostgreSQL
Global database Aurora PostgreSQL
Secondary cluster Aurora PostgreSQL
Reader instance Aurora PostgreSQL
Primary cluster Aurora PostgreSQL

Writer instance Aurora PostgreSQL

eu-west-1a

2 regions

eu-west-1

eu-west-1c

us-west-2

us-west-2a

db.t3.micro

2 clusters

1 instance

db.r6g.large

1 instance

db.r6g.large

Step 1: Create users table in each (local) region db

uuids would be

Oregon (us-west-2) Ireland (eu-west-1) | much better in the

real world

Step 2: Create foreign tables in global cluster

Oregon users table

A us_Llocal
A eu_Llocal

S postgres_fdw

R us_Llocal 16l T postgres_fdw
us_local | (

us Local.us users

(100)
)

. (_"‘; ;
R(255)

JAR(2) NOT NUL

us_Local

R eu_Llocal I(| RAPPER postgres_fdw

eu_Tlocal | (

Step 2: Create foreign tables in global cluster

Ireland users table

R eu_Llocal .IGN DATA WRAPPER postgres_fdw OPTI
R eu_local OPTIONS (

E eu Local.eu users

JAR(2) NOT |

R eu_Llocal OP]

Step 3: Create parent users table and attach partitions
Within global cluster

- users (

Lic.users AT] | PARTIT L L.Us users

Lic.users AT] | PARTIT L L.euvu _users

Insert users in the global db

Jid + [first_name + ([Jlast_name * ([J email v [company_id + ([region_code *

3 John Smith <EMAIL> 3| EU
SELECT * 4 Jane Smith <EMAIL> 4 EU
1 John Doe <EMAIL> 1 US

FROM USERS; 2 Jane Doe <EMAIL> 2 US

+ [Jfirst_name + ([J last_name * ([Jemail *+ ([Jcompany_id * [J region

SELECT * 1 John Doe <EMAIL> 1 US
FROM us_local.us_users; 2| Jane Oo¢ CEMATL 2[us

SELECT * id + [first_name < ([Jlast_name < ([Jemail + ([[Jcompany_id + [Jre
3 John Smith <EMAIL> 2 EU

FROM eU_IOcaI.eU_Users; 4 Jane Smith <EMAIL> 4 EU

EXPLAIN ANALYSE
SELECT * FROM users;

(J QUERY PLAN
(cost=100.00..225.67 rows=162 width=976) (actual time=233.622..234.281 rows=4 loops=1)

(cost=100.00..112.43 rows=81 width=976) (actual time=233.621..233.622 rows=2 loops=1)

Append

-> Forelgn Scan on eu_users users_1]1

-> Foreign Scan on us_users users_2 (cost=100.00..112.43 rows=81 width=976) (actual time=0.655..0.655 rows=2 loops=1)

Planning Time: 0.087 ms

Execution Time: 468.687 ms

Final Step: Map limited permission roles to FDW
USA roles have no permission to access EU and vice versa

CREATE USER MAPPING

CREATE USER MAPPING — define a new mapping of a user to a foreign server
Synopsis

CREATE USER MAPPING [IF NOT EXISTS] FOR { user_name | USER | CURRENT_ROLE | CURRENT_USER | PUBLIC }
SERVER server_name
[OPTIONS (option 'value' [, ...]) 1

Description

CREATE USER MAPPING defines a mapping of a user to a foreign server. A user mapping typically encapsulates connection information that a
foreign-data wrapper uses together with the information encapsulated by a foreign server to access an external data resource.

The owner of a foreign server can create user mappings for that server for any user. Also, a user can create a user mapping for their own user narr
USAGE privilege on the server has been granted to the user.

Parameters

IF NOT EXISTS

Do not throw an error if a mapping of the given user to the given foreign server already exists. A notice is issued in this case. Note that th
is no guarantee that the existing user mapping is anything like the one that would have been created.

user_name

The name of an existing user that is mapped to foreign server. CURRENT_ROLE, CURRENT USER, and USER match the name of the current
.-
user. When PUBLIC is specified, a so-called public mapping is created that is used when no user-specific mapping is applicable.

